ارزیابی الگوی بزرگنمایی لرزه‌ای سطح زمین در ساختگاه‌های واقع بر سازه‌های زیرزمینی جعبه‌ای شکل

نوع مقاله : Articles

نویسندگان

1 گروه مهندسی عمران، دانشگاه آزاد اسلامی واحد زنجان

2 دانشگاه خوارزمی

چکیده

مطالعه‌ی حاضر به بررسی اثر حضور سازه‌های زیرزمینی جعبه‌ای شکل منفرد و دوقلو بر تغییرات پاسخ لرزه‌ای سطح زمین می‌پردازد. برای این منظور با انتخاب یک رویکرد عددی تفاضل محدود اعتبارسنجی شده، ابتدا تأثیر پارامترهای مهم تأثیرگذار بر مسئله از جمله عمق تونل، انعطاف‌پذیری پوشش تونل، محتوای فرکانسی تحریک و فاصله تونل‌ها، مطالعه شده است. در ادامه بر مبنای شتاب‌نگاشت‌های واقعی زلزله، اثر حضور سازه‌های زیرزمینی جعبه‌ای شکل بر طیف پاسخ لرزه‌ای در سطح زمین مورد ارزیابی قرارگرفته و نتایج با طیف پاسخ در شرایط میدان آزاد مقایسه شده است. نتایج این تحقیق نشان می‌دهد که وجود سازه‌های زیرزمینی جعبه‌ای شکل تأثیر محسوسی بر تغییر پاسخ سطح زمین دارد به‌طوری‌که می‌تواند تا حدود دو برابر موجب بزرگنمایی پاسخ لرزه‌ای سطح زمین نسبت به حالت میدان آزاد شود. این موضوع به‌خصوص در مورد سازه‌های زیرزمینی دوقلوی سطحی مشهودتر است.

کلیدواژه‌ها


  1. Nakamura, S., Yoshida, N., and Iwatate, T. (1996) Damage to Daikai Subway Station During the 1995 Hyogoken-Nambu Earthquake and Its Investigation. Japan Society of Civil Engineers, Committee of Earthquake Engineering, 287-295.
  2. Hashash, Y.M.A., Hook, J.J., Schmidt, B., and Yao, J.I. (2001) Seismic design and analysis of underground structures. Tunnelling and Underground Space Technology, 16, 247-293
  3. Youd, T.L. and Beckman, C.J. (1996) Highway culvert performance during past earthquakes. National Center for Earthquake Engineering Research, Buffalo. Technical Report NCEER-96-0015.
  4. Gizzi, F.T. and Masini, N. (2006) Historical damage pattern and differential seismic effects in a town with ground cavities: a case study from Southern Italy. Engineering Geology, 88, 41-58.
  5. Grasso, S. and Maugeri, M. (2009) The road map for seismic risk analysis in a Mediterranean city. Soil Dynamic and Earthquake Engineering, 29, 1034-1045.
  6. Lee, V.W. (1977) On deformations near a circular underground cavity subjected to incident plane SH-waves. Proceedings of the Application of Computer Methods in Engineering Conference. Los Angeles, California, U.S.A., II, 951-62.
  7. Lee, V.W. and Trifunac, M.D. (1979) Response of tunnels to incident SH-waves. Journal of Engineering Mechanics Divison, 105(4), 643-59.
  8. Lee, V.W. (1988) Three-dimensional diffraction of elastic waves by a spherical cavity in an elastic half-space. International Journal of Soil Dynamic and Earthquake Engineering, 7(3), 149-161.
  9. Lee, V.W. and Karl, J. (1993) Diffraction of SV waves by underground, circular, cylindrical cavities. International Journal of Soil Dynamic and Earthquake Engineering, 11(8), 445-56.
  10. Manoogian, M.E. and Lee, V.W. (1996) Diffraction of SH-waves by sub-surface inclusions of arbitrary shape. Journal of Engineering Mechanics, 122, 122-129.
  11. Lee, V.W., Chen, S., and Hsu, I.R. (1999) Antiplane diffraction from canyon above a subsurface unlined tunnel. Journal of Engineering Mechanics, 25(6), 668-675.
  12. Datta, S.K. and Shah, A.H. (1982) Scattering of SH waves by embedded cavities. Wave Motion, 4(3), 265-283.
  13. Alielahi, H., Kamalian, M., Adampira, M. (2016) A BEM investigation on the influence of underground cavities on the seismic response of canyons. Acta Geotechnica, 11(2), 391-413.
  14. Alielahi, H., Adampira, M. (2016) Effect of twin-parallel tunnels on seismic ground response due to vertically in-plane waves. International Journal of Rock Mechanics & Mining Sciences, 85, 67-83
  15. Crichlow, J.M. (1982) The effect of underground structure on seismic motions of the ground surface. Geophys J R Astron Soc, 70, 563-575.
  16. Luco, J.E. and De Barros, F.C.P. (1994) Dynamic displacements and stresses in the vicinity of a cylindrical cavity embedded in a halfspace. Earthquake Engineering Structural Dynamic, 23, 321-340.
  17. Rodrıguez-Castellanos, A., Sanchez-Sesma, F.J., Luzon, F., and Martin, R. (2006) Multiple scattering of elastic waves by subsurface fractures and cavities. Bulletin of Seismological Society of America, 96(4A), 1359-1374.
  18. Yiouta-Mitra, P., Kouretzis, G., Bouckovalas, G., and Sofianos, A. (2007) Effect of underground structures in earthquake resistant design of surface structures. Dynamic Response and Soil Properties. Geo-Denver: New Peaksin Geotechnics.
  19. Smerzini, C., Aviles, J., Sanchez-Sesma, F.J, and Paolucci, R. (2009) Effect of Underground Cavities on Surface Earthquake Ground Motion under SH Wave Propagation. Earthquake Engineering and Structural Dynamics, 32(12), 1441-1460.
  20. Alielahi, H., Kamalian, M., and Adampira, M. (2015) Seismic ground amplification by unlined tunnels subjected to vertically Propagating SV and P waves using BEM. Soil Dynamics and Earthquake Engineering, 71, 63-79.
  21. Alielahi, H. and Adampira, M. (2016) Site-specific response spectra for seismic motions in half-plane with shallow cavities. Soil Dynamics and Earthquake Engineering, 80, 163-167.
  22. Baziar, M.H., Rabeti Moghadam, M., Kim, D.S., and Choo, Y.W. (2014) Effect of underground tunnel on the ground surface acceleration. Tunnelling and Underground Space Technology, 44, 10-22.
  23. Baziar, M.H., Ghalanderzadeh, A., and Rabeti Moghadam, M. (2015) Tehran subway tunnel effect on the seismic response of the ground surface with linear soil behavior: an experimental and numerical study. Bulletin of Earthquake Science and Engineering, 2(3), 15-36.
  24. Wang, J.N. (1993) Seismic Design of Tunnels: A Simple State of the Art Design Approach. Parsons Brinckerhoff Inc., New York.
  25. Ricker, N. (1960) The form and laws of propagation of seismic wavelets. Geophysics, 18(1), 10-40.
  26. Itasca Consulting Group (2014) FLAC – Fast Lagrangian Analysis of Continua, Ver. 7.0 User’s Guide. Minneapolis, Itasca.
  27. Kuhlemeyer R.L. and Lysmer J. (1973) Finite element method accuracy for wave propagation problems. Journal of Soil Mechanics and Foundations, ASCE, 99(SM5), 421-427.
  28. Kramer, L.S. (1996) Geotechnical Earthquake Engineering. Prentice Hall.