مدل‌سازی گسلش نرمال و تونل قطعه‌ای در سانتریفیوژ ژئوتکنیکی

نوع مقاله : Articles

نویسندگان

1 دانشگاه تبریز

2 پردیس دانشکده‌های فنی دانشگاه تهران

چکیده

روش حفاری تمام مکانیزه‌ی تونل، لاینینگ‌های سگمنتی را ترویج نموده است. یکی از انواع تغییر شکل‌های بزرگ و ماندگار زمین، گسلش است. تونل‌ها به جهت طول زیاد در معرض خطر گسلش هستند. رفتار تونل‌ها در ناحیه‌ی گسل یکی از مسائلی است که کمتر مطالعه شده است. در این مقاله، جزئیات روش مدل‌سازی گسلش زمین و تونل سگمنتی حفر شده در خاک در سانتریفیوژ ژئوتکنیکی بیان ‌شده و نتایج شش آزمایش گسلش شیب‌لغز نرمال با تونل سگمنتی در سانتریفیوژ ژئوتکنیکی ارائه گردیده است. نتایج بیانگر موفقیت در مدل‌سازی است؛ لذا مکانیسم‌های گسیختگی ممکن مشخص گردید. این مکانیسم‌ها تابع میزان جابه‌جایی گسل است. با افزایش جابه‌جایی در گسل، تغییر شکل در مقطع عرضی تونل و در نهایت گسیختگی در پوشش تونل و ریزش خاک داخل آن اتفاق می‌افتد. نظر به اینکه تونل-های مورد مطالعه تونل‌های کم‌عمق شهری لحاظ گردیده‌اند، لذا ریزش خاک به داخل تونل منجر به شکل‌گیری فروچاله در سطح زمین می-شود. نتایج آزمایش‌ها با سربارهای مختلف نشان داد که با افزایش سربار تونل، آستانه‌ی تحمل تونل در مقابل ریزش خاک به داخل تونل در اثر گسلش افزایش می‌یابد. با وجود اعمال گسلش زیاد، آسیب‌های سازه‌ای در سگمنت‌ها به دلیل عملکرد مناسب هندسی سگمنت‌ها و اتصالات آنها اندک بوده و تنها آسیب‌هایی موضعی در آنها مشاهده گردید.

کلیدواژه‌ها


Loukidis, D., Bouckovalas, G., and Papadimitriou, A. (2009) Analysis of fault rupture propagation through uniform soil cover. Soil Dynamics and Earthquake Engineering, 29, 1389-1404.
Anastasopoulos, I. and Gazetas, G. (2007) Foundation–structure systems over a rupturing normal fault: Part I. Observations after the Kocaeli 1999 earthquake. Bull. Earthquake Engineering, 5(3), 253-275.
Kiani, M., Ghalandarzadeh, A., and Akhlaghi, T. (2013) Physical modelling of segmental tunnel interaction with 60˚ normal fault in geotechnical centrifuge. 10th Iranian Tunelling Conference, Tehran, Iran.
Hashash, Y.M.A., Hook, J.J., Schmidt, B., and Yao, J.I.C. (2001) Seismic design and analysis of underground structures. Tunneling and Underground Space Technology, 16(4), 247-293.
Sugimura, Y. Miura, S., and Konagai, K. (2001) Damage to shihkang dam inflicted by faulting in the september 1999 Chi-Chi earthquake. In Seismic Fault Induced Failures.
Wang, W.L., Wang, T.T., Su, J.J., Lin, C.H., Seng, C.R., and Huang, T.H. (2001) Assessment of damage in mountain tunnels due to the Taiwan Chi-Chi Earthquake. Tunnelling and Underground Space Technology, 16(3), 133-150.
Konagai, K. and Hori, M. (2006) Key Points for Rational Design for Civil-Infrastructures near Seismic Faults Reflecting Soil-Structure Interaction Features. Report of JSPS Research Project.
Prentice, C. and Ponti, D. (1997) Coseismic deformation of the Wrights tunnel during the 1906 San Francisco earthquake: A key to understanding 1906 fault slip and 1989 surface ruptures in the southern Santa Cruz Mountains, California. Journal of Geophysical Research, 102(B1), 635-648.
Kontogianni, V. and Stiros, S. (2003) Earthquakes and seismic faulting: effects on tunnels. Turkish Journal of Earth Sciences, 12, 153-156.
Bäckblom, G., Munier, G., and Hökmark, H. (2004) Earthquake data and modelling to study the effects of future earthquakes on a final repository of spent nuclear fuel in sweden. World Conference on Earthquake Engineering, Vancouver, B.C., Canada.
Wang, Z.Z., Gao, B., Jiang, Y., and Yuan, S. (2009) Investigation and assessment on mountain tunnels and geotechnical damage after the Wenchuan earthquake. Science in China Series E: Technological Sciences, 52(2), 546-558.
Kiani, M., Akhlaghi, T., and Ghalandarzadeh, A. (2016) Experimental modeling of segmental shallow tunnels in alluvial affected by normal faults. Journal of Tunnelling and Underground Space Technology, 51, 108-116.
Moosavi, S.M., Jafari, M.K., Kamalian, M., and Shafiee, A. (2010) Experimental investigation of reverse fault rupture–rigid shallow foundation interaction. International Journal of Civil Engineering, 8(2), 85-98.
Bray, J., Seed, R., Ciuff, L., and Seed, H. (1994) Earthquake fault rupture propagation through soil. Journal of Geotechnical Engineering, 120(3), 543-561.
Pamuk, A., Kalkan, E., and Ling, H. (2005) Structural and geotechnical impacts of surface rupture on highway structures during recent earthquakes in Turkey. Soil Dynamics and Earthquake Engineering, 581-589.
Anastasopoulos, I., Gazetas, M.G., Bransby, M.F., Davies, M.C.R., and Nahas, A.El. (2007) Fault rupture propagation through sand: finite-element. Journal of Geotechnical and Geoenvironmental Engineering.
Lin, M., Chung, C., and Jeng, F. (2006) Deformation of overburden soil induced by thrust fault slip. Engineering Geology, 88, 70-89.
Ng, C.W.W., Cai, Q.P., and Hu, P. (2012) Centrifuge and numerical modeling of normal fault-rupture propagation in clay with and without a preexisting fracture. Journal of Geotechnical and Geoenvironmental Engineering, 138(12), 1492-1502.
Oettle, N. and Bray, J. (2013) Fault rupture propagation through previously ruptured soil. Journal of Geotechnical and Geoenvironmental Engineering, 139(10), 1637-1647.
Anastasopoulos, I., Callerio, A., Bransby, M.F., Davies, M.C.R., Nahas, A.EI., Faccioli, E., Gazetas, G., Masella, A., Paolucci, R., Pecker, A., and Rossignol, E. (2008) Numerical analyses of fault–foundation interaction, Bull. Earthquake Eng.
Anastasopoulos, I. and Gazetas, G. (2007) Foundation–structure systems over a rupturing normal fault: Part II. Analysis of the Kocaeli case histories. Bull Earthquake Engineering, (5), 277-301.
Bransby, M.F., Davies, M.C.R. and Nahas, A.EL. (2008) Centrifuge modelling of normal fault–foundation interaction. Bull. Earthquake Engineering, (6), 585-605.
Bransby, M.F., Davies, M.C.R., Nahas, A.EL., and Nagaoka, S. (2008) Centrifuge modelling of reverse fault–foundation interaction. Bull. Earthquake Engineering, (6), 607-628.
Gazetas, G., Pecker, A., Faccioli, E., Paolucci, R. and Anastasopoulos, I. (2008) Preliminary design recommendations for dip-slip fault–foundation interaction. Bull. Earthquake Engineering.
Fadaee, M., Anastasopoulos, I., Gazetas, G., Jafari, M., and Kamalian, M. (2013) Soil bentonite wall protects foundation from thrust faulting: analyses and experiment. Earthquake Engineering and Engineering Vibration, (12), 473-486.
Rojhani, M., Moradi, M., Galandarzadeh, A., and Takada, S. (2012) Centrifuge modeling of buried continuous pipelines subjected to reverse faulting. Canadian Geotechcal Journal, 49, 659-670.
Burridge, P., Scott, R., and Hall, J. (1989) Centrifuge study of faulting effect on tunnel. Journal of Geotechnical Engineering, 115(10), 949-967.
Caulfield, R., Kieffer, D., Tsztoo, D., and Cain, B. (2005) Seismic design measures for the retrofit of the claremont tunnel. In RETC Proceedings.
Johansson, J. and Konagai, K. (2006) Fault induced permanent ground deformations-an experimental comparison of wet and dry soil and implications for buried structures. Soil Dynamics and Earthquake Engineering, 26, 45-53.
Lin, M., Chung, C., Jeng, F., and Yao, T. (2007) The deformation of overburden soil induced by thrust faulting and its impact on underground tunnels. Engineering Geology.
Gregor, T., Garrod, B., and Young, D. (2007) Analyses of underground structures crossing an active fault in Coronado, California. In Underground Space – the 4th Dimension of Metropolises.
Anastasopoulos, I., Gerolymos, N., Drosos, V., Georgarakos, T., Kourkoulis, R., and Gazetas, G. (2008) Behaviour of deep immersed tunnel under combined normal fault rupture deformation and subsequent seismic shaking. Bull. Earthquake Engineering.
Anastasopoulos, I. and Gazetas, G.(2010) Analysis of cut-and-cover tunnels against large tectonic. Bull. Earthquake Engineering, (8), 283-307.
Wang, Z., Zhang, Z., and Gao, B. (2012) The seismic behavior of the tunnel across active fault. in WCEE2012.
Baziar, M., Nabizadeh, A., Lee, C., and Hung, W. (2014) Centrifuge modeling of interaction between reverse faulting and tunnel. Soil Dynamics and Earthquake Engineering, 65, 151-164.
Muir Wood, D. (2004) Geotechnical Modelling. Spon Press, London.