پاسخ لرزه ای رسوبات آبرفتی ناشی از مؤلفه قائم زلزله های حوزه ی نزدیک گسل

نوع مقاله : Articles

نویسندگان

دانشکده مهندسی عمران، دانشگاه تهران

چکیده

یکی از راهکارهای متداول برای تعیین خصوصیات مؤلفه قائم زلزله طرح به­صورت ویژه ساختگاه استفاده از روابط تجربی نسبت طیفی شتاب قائم به افقی (V/H) است. با این ‌حال اثرات ساختگاهی تاکنون به­صورت دقیق در این روابط وارد نشده است. در این مقاله اثرات محلی ساختگاه بر روی خصوصیات مؤلفه قائم شتاب زلزله‌های میدان نزدیک بررسی شده است.  به این منظور ساختگاه­های مختلف با ویژگی­های دینامیکی متفاوت به­جای دسته‌بندی‌های کلی روابط تجربی در نظر گرفته شده و تحت تحریک مجموعه‌ای از زلزله‌های میدان نزدیک به ‌صورت دو بعدی تحلیل دینامیکی شده‌اند. نتایج به‌دست‌آمده نشان می‌دهد که نسبت طیفی شتاب قائم به افقی (V/H) از عواملی نظیر پریود اساسی ارتعاشی ساختگاه در حالت انتشار موج فشاری، نسبت پواسون خاک (υ) و همچنین مشخصات تحریک ورودی تأثیرپذیر است. مقایسه‌ی نسبت­های V/H به­دست­آمده از تحلیل‌های عددی با روابط تجربی موجود نشان می‌دهد که همخوانی نتایج در حالت اشباع بودن خاک نسبت به حالت خشک بیشتر است و با افزایش نسبت پواسون از میزان تأثیر نوع خاک بر نسبت‌های طیفی شتاب V/H کاسته می‌شود. در نهایت پیشنهاد می‌شود از معکوس امپدانس لرزه‌ای یک‌چهارم طول ‌موج بر مبنای سرعت موج فشاری، در روابط کاهندگی تجربی V/H برای لحاظ نمودن اثرات ساختگاهی استفاده شود.

کلیدواژه‌ها


  1. Papazoglou, A. (1995) Near-Source Vertical Earthquake Ground Motion; an Assessment of Causes and Effects. MSc. Dissertation, Imperial College, London.
  2. Elnashai, A. and Papazoglou, A. (1997) Procedures ans spectra for analysis of RC structures subjected to strong vertical earthquake loads. Journal of Earthquake Engineering, 1, 121-155.
  3. Legeron, F. and Sheikh, M.N. (2009) Bridge support elastic reactions under vertical earthquake ground motion. Engineering Structures, 31(10), 2317-2326.
  4. Hashash, Y.M., Phillips, C., and Groholski, D.R. (2010) Recent advances in non-linear site response analysis. 5th International Conference in Recent Advances in Geotechnical Eartqhuake Engineering and Soil Dynamics, Paper No. OSP 4, 1-22.
  5. He, L. (2005) Liquefaction-Induced Lateral Spreading and its Effects on Pile Foundations. Ph.D. Thesis, University of California San Diego, USA.
  6. Papazoglou, A. and Elnashai, A. (1996) Analytical and field evidence of the damaging effect of vertical earthquake ground motion. Earthquake Engineering and Structural Dynamics, 25(10), 1109-1138.
  7. Newmark, N.M., Blume, J.A., and Kapur, K.K. (1973) Seismic Design Spectra for Nuclear Power Plants. Consulting Engineering Services, Urbana, IL.
  8. Niazi, M. and Bozorgnia, Y. (1989) Behavior of vertical ground motion parameters in the near-field. Seismological Research Letters, 60(4).
  9. Niazi, M. and Bozorgnia, Y. (1990) Observed ratios of PGV/PGA and PGD/PGA for deep soil sites across SMART-1 array, Taiwan. Proceedings of Fourth US National Conference on Earthquake Engineering, Palm Springs, CA, 367-374.
  10. Niazi, M. and Bozorgnia, Y. (1992) Behaviour of near source vertical and horizontal response spectra at SMART-1 array, Taiwan. Earthquake Engineering and Structural Dynamics, 21(1), 37-50.
  11. Niazi, M. and Bozorgnia, Y. (1992) Behaviour of Near Source Vertical and Horizontal Response Spectra at SMART-1 Array. Taiwan.
  12. Bozorgnia, Y. and Niazi, M. (1993) Distance scaling of vertical and horizontal responsespectra of the Loma Prieta earthquake. Earthquake Engineering and Structural Dynamics, 22, 695-707.
  13. Bozorgnia, Y., Niazi, M., and Campbell, K.W. (1995) Characteristics of free-field vertical ground motion during the Northridge earthquake. Earthquake Spectra, 11, 515-525.
  14. Bozorgnia, Y., Niazi, M., and Campbell, K.W. )1996( Relationship between vertical and horizontal ground motion for the Northridge earthquake. Proceeding of 11th World Conference on Earthquake Engineering, Acapulco, Mexico.
  15. Watabe, M., Tohido, M., Chiba, O., and Fukuzawa, R. (1990) Peak accelerations and response spectra of vertical strong motions from near-fieldrecords in USA. Proceeding of 8th Japan Earthquake Engineering Symposium, 301-306.
  16. Silva, W. (1997) Characteristics of Vertical Strong Ground Motions for Applications to Engineering Design. FHWA/NCEER Workshop on the National Representation of Seismic Ground Motion for New and Existing Highway Facilities.
  17. Iranian Code of Practice for Seismic Resistant Design of Buildings (Standard No. 2800), 4th Edition.
  18. Bozorgnia, Y. and Campbell, K.W. )2004( The vertical-to-horizontal response spectral ratio and tentative procedures for developing simplified V/H and vertical design spectra. Journal of Earthquake Engineering, 8(2), 175-207.
  19. Ghalandarzadeh, A. and Motamed, R. (2005) Microtremor measurements: an effective tool for site effect studies. Civil Engineering Infra-structures Journal, 38(6), 777-790 (in Persian).
  20. Ghalandarzadeh, A. and Kavand, A. (2010) Determination of shear wave velocity of sedimentary deposits by means of microtremor measurements. Civil Engineering Infrastructures Journal, 44(4), 525-536 (in Persian).
  21. QUAKE/W (2012) The GeoStudio suite, GEO-SLOPE International Ltd., Alberta, Canada.
  22. Elgamal, A.W., Zagal, M., Tang, T.H., and Stepp, J.C. (1995) Lotung downhole array. I: Evaluation of site dynamic properties. Journal of Geotechnical Engineering, 121(4), 350-362.
  23. Amorosi, A., Elia, G., Boldini, D., and Schiavone, F. (2011) Seismic ground response analysis: comparison between numerical simulations and observed array data. Proceedings of 5th International Conference on Earthquake Geotechnical Engineering, Santiago, Chile, Paper No. SGRAM.
  24. Borja, R.I., Caho, H.Y., Montans, F., and Lin, C.H. (1999) Nonlinear ground response at Lotung LSST site. Journal of Geotechnical and Geoenvironmental Engineering, 125(3), 187-197.
  25. Borja, R.I., Lin, C.H., Sama, K.M., and Masada, G.M. (2000) Modelling non-linear ground response of nonliquefiable soils. Earthquake Engineering and Structural Dynamics, 29, 63-83.
  26. Seed, H.B. and Idriss, I.M. (1970) Soil Moduli and Damping Factors for Response Analyses. Report EERC 70-10, Earthquake Engineering Research Center, University of California, Berkeley.
  27. Vucetic, M. and Dobry, R. (1991) Effects of soil plasticity on cyclic response. Journal of Geotechnical Engineering, ASCE, 117(1), 89-107.
  28. PEER Ground Motion Database [Online]. Available: http://ngawest2.berkeley.edu
  29. Bommer, J., Akkar, S., and Kale, O. (2011) A model for vertical-to-horizontal response spectral ratios for Europe and Middel East. Bulletin of the Seismological Society of America, 101(4), 1783-1806.
  30. Gulerce, Z. and Abrahamson, N.A. (2011) Site specific design spectra for vertical ground motion. Earthquake Spectra, 27(4), 1023-1047.
  31. PEER (2013) PEER reports on NGA-West2 Ground Motion Prediction Equations for Vertical Ground Motions.
  32. Poggi, V., Edwards, B., and Fah, D. (2012) Characterizing the vertical-to-horizontal ratio of grond motion at soft-sediment sites. Bulletin of the Seismological Society of America, 102(6), 2741-2756.