ارزیابی خرابی های پیش‌رونده پی های سطحی در شرایط روانگرایی با استفاده از مطالعات سانتریفیوژ

نوع مقاله : Articles

نویسندگان

1 دانشگاه سمنان

2 پژوهشگاه بین المللی زلزله شناسی و مهندسی زلزله

چکیده

در این مقاله با استفاده از نتایج سه سری آزمایش سانتریفیوژ چگونگی اثر گسترش عمق روانگرایی و خرابی­های پیش‌رونده بر نشست حین و پس از تحریکات دو پی­ سطحی با فشارهای استاتیکی متفاوت مورد مطالعه قرارگرفته است. اعماق مختلف گسترش روانگرایی با اعمال تحریکات ورودی هارمونیک با دامنه­های شتاب مختلف به مدل سانتریفیوژ به‌دست‌آمده است. نتایج بیانگر سه مکانیسم (فاز) مجزا در نشست پی است که عبارتند از: (1) حین تحریک، (2) خرابی پیش‌رونده و (3) باز تحکیم. بر خلاف میدان آزاد که در آن نشست­ها از نوع حجمی بوده، بیشتر نشست پی­ها از نوع برشی بوده و در فازهای (1) و (2) اتفاق افتاده است. عمق گسترش روانگرایی رفتار پس از تحریک را به‌طور قابل­ملاحظه­ای تحت تأثیر قرار داده است. پاسخ شتاب پی­ها تحت تأثیر گسترش عمق روانگرایی بوده، به‌گونه‌ای که پی­ها در قوی­ترین تحریک علیرغم تجربه‌ی نشست بزرگ­تر پاسخ ضعیف­تری داشته­اند. به نظر می­رسد که نشست­های پس از تحریک و خرابی­های پیش‌رونده در پی­های سطحی از اهمیت بالایی برخوردار باشند که در کاربردهای مهندسی مورد ارزیابی قرار نمی­گیرند.

کلیدواژه‌ها


. Seed H. B., Idriss I. M., 1967. Analysis of soil liquefaction: Niigata earthquake. Journal of Soil Mechanics and Foundations Divission, ASCE, 93(3), pp. 83-108.
. Yoshimi Y., Tokimatsu K., 1977. Settlement of buildings on saturated sand during earthquakes. Soils and Foundations, vol. 171, pp. 23–38.
. Nagase H., Ishihara K., 1988. Liquefaction-induced compaction and settlement of sand during earthquakes. Soils and Foundations, 28(1), pp. 65–76.
. Adachi T., Iwai S., Yasui M., Sato Y., 1992. Settlement and inclination of reinforced concrete buildings in Dagupan City due to liquefaction during the 1990 Philippine earthquake. Proc., 10thWorld Conf. on Earthquake Engineering, International Association for Earthquake Engineering (IAEE), Madrid, Spain, pp. 147–152.
. Acacio A. A., Kobayashi Y., Towhata I., Bautista, R. T., Ishihara K., 2001. Subsidence of building foundation resting upon liquefied subsoil case studies and assessment. Soils and Foundations, 41(6), pp. 111–128.
. Yoshida N., Tokimatsu K., Yasuda S., Kokusho T., and Okimura T., 2001. Geotechnical aspects of damage in Adapazari city during 1999 Kocaeli, Turkey earthquake. Soils and Foundations, 41(4), pp. 25–45.
. Tokimatsu K., Tamura S., Suzuki H. and Katsumata K., 2012. Building damage associated with geotechnical problems in the 2011 Tohoku Pacific Earthquake. Special Issue on Geotechnical Aspects of the 2011 off the Pacific Coast of Tohoku Earthquake, Soils and Foundations, 52(5), pp. 956-974.
. Bertalot, D., Brennan, A. J., Villalobos, F., 2013. Influence of bearing pressure on liquefaction-induced settlement of shallow foundations. Geotechnique, 63(5), pp. 391–399.
. Liu L., Dobry R., 1997. Seismic response of shallow foundation on liquefiable sand. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 123(6), pp. 557–67.
. Coelho P., Haigh S. K., Madabhushi S. P., O'brien T., 2004. Centrifuge modeling of the use of densification as a liquefaction resistance measure for bridge foundations. 13 the World Conference on Earthquake Engineering.
. Dashti S., Bray J. D., Pestana J. M., Riemer M., Wilson D., 2010a. Mechanisms of seismically induced settlement of buildings with shallow foundations on liquefiable soil. Journal of Geotechnical and Geoenvironmental Engineering, 136(1), pp. 151-164.
. Marques A., Coelho P., Cilingir U., Haigh S.K., Madabhushi G., 2012. Earthquake-Induced Liquefaction Effects on a Shallow Foundation. WCEE conference 2012.
. Ishikawa A., Zhou Y. G., Shamoto Y. Mano H., Chen Y. M., Ling D. S., 2015. Observation of post-liquefaction progressive failure of shallow foundation in centrifuge model tests. Soils and Foundations. 55(6), pp. 1501-1511.
. Mehrzad B., Haddad A., Jafarian Y., 2016. Centrifuge and Numerical Study of Liquefaction-Induced Response of Shallow Foundations with Different Contact Pressures. Int. J. Civil Eng., 14, pp. 117-131.
. Chian, S.C., and Madabhushi, S.P.G., 2010. Influence of Fluid Viscosity on the Response of Buried Structures. Proceeding of the 7th International Conference on Physical Modeling in Geotechnics, Zurich, Switzerland, pp.111-115.
. Hausler E. A., 2002. Influence of ground improvement on settlement and liquefaction: a study based on field case history evidence and dynamic geotechnical centrifuge tests. Berkeley, CA: University of California.
. Adalier K., Elgamal A., Meneses J., Baez J. I., 2003. Stone columns as liquefaction countermeasure in non-plastic silty soils. Soil Dynamics and Earthquake Engineering, 23(7), pp. 571–584.
. Ishihara K., and Yoshimine M., 1992. Evaluation of settlements in sand deposits following liquefaction during earthquakes. Soils and Foundations, vol. 321, pp. 173–188.
. Tokimatsu K., and Seed H. B., 1987. Evaluation of settlements in sands due to earthquake shaking. Journal of Geotechnical and geoenvironmental Engineering. 1138, pp. 861– 878.