الگوی بزرگنمایی لرزه ای سطح زمین در حضور تونل زیرزمینی نعل اسبی تحت امواج مهاجم SH

نوع مقاله : Articles

نویسندگان

دانشگاه آزاد اسلامی واحد زنجان، زنجان، ایران

چکیده

در این مقاله، الگوی بزرگنمایی پاسخ لرزه‌ای سطح زمین همگن و همسان در حضور تونل‌های زیرزمینی نعل‌اسبی شکل بدون پوشش تحت امواج مهاجم مایل SH ارائه شده است. از روش عددی اجزای مرزی نیم صفحه1 در حوزه ی زمان که قادر است مش بندی را تنها بر روی مرز پیرامون حفره متمرکز سازد، برای مدلسازی و تحلیل لرزه ای بهره گرفته شده است. از مشخصات هندسی تونل خط دوم متروی کرج برای مطالعات پارامتریک استفاده شده است. موج مهاجم از نوع موجک ریکر2 با مشخصات مفروض در نظرگرفته شده است. نسبت عمق تونل، موقعیت افقی آن و زاویه ی موج مهاجم از جمله پارامترهایی هستند که مورد حساسیت‌سنجی قرار گرفته اند. از مقایسه‌ی نتایج حاصل با دستاوردهای تحلیلی دیگر محققان، دقت مطلوب روش پیشنهاد شده در مدلسازی تونل‌های نعل‌اسبی مبین شد. همچنین مشاهده شد که حضور تونل‌های زیرزمینی در عمق ها و موقعیت های مختلف بر روی شکل‌گیری الگوی متفاوت پاسخ لرزه‌ای سطح زمین مؤثر است. استفاده از روش اجزای مرزی نیم‌صفحه در حوزه‌ی زمان برای مدل سازی سازه های زیرزمینی، جایگزین با دیگر روش‌های عددی پیشین و بهره گیری از نتایج حاصل جهت تکمیل و تدقیق آیین‌نامه‌های لرزه ای موجود توصیه می شود.

کلیدواژه‌ها


عنوان مقاله [English]

Amplification Pattern of Seismic Ground Surface in the Presence of Underground Horseshoe Tunnel Subjected to Incident SH-Wave

نویسندگان [English]

  • Mehdi Panji
  • Amirabbas Fakhravar
Islamic Azad University, Zanjan Branch, Zanjan, Iran
چکیده [English]

Throughout history, earthquake mitigation has always been of vital importance for the humans. Nowadays, by growing technology and computer sciences, several approaches including empirical, analytical and numerical methods are developed and used byresearchers to attempt for reducing some possible damages of this phenomenon. Although the responses of analytical methods have high accuracy, various types of arbitrarily shaped topographic features cannot be applied for modeling in reality. It results in the development of numerical methods which have good flexibility. Technically speaking, numerical methods were generally divided into two types, volumetric and boundary methods. Although volumetric methods have advantages such as high accuracy, simple formulation and wide covering range of problems, they have high computations and complex models in the problems with infinite and semi-infinite boundaries. Thus, the field is prepared for the presence of boundary approaches such as Boundary Element Method (BEM). In this method, only the boundaries of the media need to be discretized in order to analyze an elastic continuous media. Considering the automatic satisfaction of the wave’s radiation conditions in the formulation, it is an appropriate method for dynamic analysis. Two BEM formulations have been proposed to be used in modeling, including full-plane and half-plane. In this paper, the half-plane time-domain BEM was applied to obtain the amplification pattern of the homogeneous ground surface in the presence of unlined horseshoe-shaped tunnels, subjected to propagating obliquely incident out-of-plane SH-waves. In the use of the proposed method, the boundary around the tunnel was only required to be discretized. The Ricker wavelet was assumed as incident wave function. The geometrical properties of the first part from second line of the Karaj metro tunnel were considered as the case study. A sensitivity analysis was carried out on the responses with considering some intended parameters including depth ratio,horizontal location ratio, and angle of incident wave. It should be noted that, to obtain acceptable responses and in order to achieve the dimensionless results, the scale of 50 times was applied in the modeling. The response of the ground surface and theamplification patterns were presented in the time/frequency domains and the synthetic seismograms were obtained. The results showed that making the meshes to focus only on the tunnel surrounding boundary and leaving the discretized ground surface reducesnot only the analysis time, but also the input data and calculations compared to traditional BEM approaches. The verification of the responses versus existing analytical results showed that the used method had great accuracy for modeling underground tunnels. Simple modeling of actual underground structures and obtaining accurate responses through the use of time-domain half-plane BEM were main purposes of this paper. Besides, the presence of metro tunnels was effective on the formation of different seismicpatterns of ground surface. The general pattern of responses in the frequency domain showed that, when subjected to vertically propagating incident SH-waves, the isolation effect of the presence of the tunnel was quite pronounced on reducing the ground surface response.

کلیدواژه‌ها [English]

  • Half-Plane BEM
  • Time-domain
  • Underground Horseshoe Tunnel
  • Karaj Metro
  • Amplification pattern
  • Incident SH-Waves
  1. Sgarlato, G., Lombardo, G., & Rigano, R. (2011). Evaluation of seismic site response nearby underground cavities using earthquake and ambient noise recordings: A case study in Catania area, Italy. Engineering Geology, 122(3), 281-291.‏
  2. Kazemeini, M. J., Haghshenas, E., & Kamalian, M. (2015). Experimental Evaluation of Seismic Site Response Over and Nearby Underground cavities (Study of Subway Tunnel in City of Karaj, Iran). Iranian Journal of Science and Technology Transactions of Civil Engineering, 39(C2), 319-332.‏
  3. Panji, M., Kamalian, M., Asgari Marnani, J. and Jafari, M.K., (2013a). The literature review of seismic analysis of topographic features subjected to incident SH-waves, IIEES Res. Bull., 15(4), 21-35 (in Persian)
  4. Asano, S.(1960).Reflection and refraction ofelastic waves at a corrugated boundary surface, Part I, The Case of Incidence of SH Wave, Bulletin of the Earthquake Research Institute, 38, 177-197.
  5. Datta, S.K.(1974).Diffraction of SH-waves by an elliptic elastic cylinder. International Journal of Solids and Structures, 10(1), 123-133.
  6. Gamer, U. (1977). Dynamic stress concentration in an elastic half space with a semi-circular cavity excited by SH waves. International Journal of Solids and Structures, 13(7), 675-681.‏
  7. Lee, V.W., & Trifunac, M.D.(1979).Response of tunnels to incident SH waves. Journal of the Engineering Mechanics Division, 105(4), 643-659.
  8. Chen, Y.L.(1980).The analysis of elastic liner in a cylindrical tunnel subjected to sh‐waves. Journal of the Chinese Institute of Engineers, 3(1), 21-29.
  9. Datta, S.K., & Shah, A.H.(1982).Scattering of SH waves by embedded cavities.Wave Motion, 4(3), 265-283.
  10. Lee, V. W., & Manoogian, M. E. (1995). Surface motion above an arbitrary shape underground cavity for incident SH waves. European Earthquake Engineering, 8(1), 3-11.‏
  11. Manoogian, M. E. (2000). Scattering and diffraction of SH waves above an arbitrarily shaped tunnel. ISET Journal of Earthquake Technology, 37(1-3), 11-26.
  12. Liang, J., Luo, H., & Lee, V. W. (2010). Diffraction of plane SH waves by a semi-circular cavity in half-space. Earthquake Science, 23(1), 5-12.‏
  13. Yi, C., Zhang, P., Johansson, D., & Nyberg, U. (2014). Dynamic analysis for a circular lined tunnel with an imperfectly bonded interface impacted by plane SH-waves.‏ Proceedings of the World Tunnel Congress 2014 – Tunnels for a better Life. Foz do Iguaçu, Brazil.
  14. Amornwongpaibun, A., Luo, H., & Lee, V. W. (2016). Scattering of Anti-Plane (SH) Waves by a Shallow Semi-Elliptical Hill with a Concentric Elliptical Tunnel. Journal of Earthquake Engineering, 20(3), 363-382.‏
  15. Gao, Y., Dai, D., Zhang, N., Wu, Y., & Mahfouz, A. H. (2016). Scattering of Plane and Cylindrical SH Waves by a Horseshoe Shaped Cavity. Journal of Earthquake and Tsunami, 10(2), 1650011-(1-23)
  16. Wang, G., & Liu, D. (2002). Scattering of SH-wave by multiple circular cavities in half space. Earthquake engineering and Engineering vibration, 1(1), 36-44.‏
  17. Shi, W. P., Liu, D. K., Song, Y. T., Chu, J. L., & Hu, A. Q. (2006). Scattering of circular cavity in right-angle planar space to steady SH-wave. Applied Mathematics and Mechanics, 27(12), 1619-1626.‏
  18. Lee, V.W., Manoogian, M.E., & Chen, S.(2002).Antiplane SH-deformations near a surface rigid foundation above a subsurface rigid circular tunnel.Earthquake Engineering and Engineering Vibration, 1(1), 27-35.
  19. Smerzini, C., Aviles, J., Paolucci, R., & Sanchez‐Sesma, F.J.(2009).Effect of underground cavities on surface earthquake ground motion under SH wave propagation.Earthquake Engineering & Structural Dynamics, 38(12), 1441-1460.
  20. Liu DK & Lin H. (2004). Scattering of sh-waves by an interacting interface linear crack and a circular cavity near bimaterial interface. Acta Mechanica Sinica, 20(3), 317-326.‏
  21. Tsaur, D.H., & Chang, K.H.(2012).Multiple scattering of SH waves by an embedded truncated circular cavity.J.Mar.Sci.Tech, 20(1), 73-81.
  22. Lee, K. M., & Rowe, R. K. (1991). An analysis of three-dimensional ground movements: the Thunder Bay tunnel. Canadian Geotechnical Journal, 28(1), 25-41.‏
  23. Molinero, J., Samper, J., & Juanes, R. (2002). Numerical modeling of the transient hydrogeological response produced by tunnel construction in fractured bedrocks. Engineering Geology, 64(4), 369-386.‏
  24. Yiouta-Mitra, P., Kouretzis, G., Bouckovalas, G., & Sofianos, A. (2007). Effect of underground structures in earthquake resistant design of surface structures. Dynamic Response and Soil Properties, 1-10.‏
  25. ‏25. Besharat, V., Davoodi, M., & Jafari, M. K. (2012, September). Effect of underground structures on free-field ground motion during earthquakes. In 15th World Conference on Earthquake Engineering, Lisbon, Portugal.‏
  26. Dehghan, A. N., Shafiee, S. M., & Rezaei, F. (2012). 3-D stability analysis and design of the primary support of Karaj metro tunnel: Based on convergence data and back analysis algorithm. Engineering Geology, 141-142, 141-149.‏
  27. Shen, Y., Gao, B., Yang, X., & Tao, S. (2014). Seismic damage mechanism and dynamic deformation characteristic analysis of mountain tunnel after Wenchuan earthquake. Engineering Geology, 180, 85-98.‏
  28. Xu, N. W., Li, T. B., Dai, F., Li, B., Zhu, Y. G., & Yang, D. S. (2015). Microseismic monitoring and stability evaluation for the large scale underground caverns at the Houziyan hydropower station in Southwest China. Engineering Geology, 188, 48-67.‏
  29. Beskos, D.E., 1987. Boundary element methods in dynamic analysis, Appl. Mech. Rev., 40(1), 1-23.
  30. Luco, J. E., & De Barros, F. C. P. (1994). Dynamic displacements and stresses in the vicinity of a cylindrical cavity embedded in a half‐space. Earthquake engineering & structural dynamics, 23(3), 321-340.‏
  31. Yu, M.C. and Dravinski, M., 2009. Scattering of a plane harmonic SH wave by a completely embedded corrugated scatterer, Int. J. Numer. Methods Eng., 78, 196-214.
  32. Parvanova, S. L., Dineva, P. S., Manolis, G. D., & Wuttke, F. (2014). Seismic response of lined tunnels in the half-plane with surface topography. Bulletin of earthquake engineering, 12(2), 981-1005.‏
  33. Liu, Z., & Liu, L. (2015). An IBEM solution to the scattering of plane SH-waves by a lined tunnel in elastic wedge space. Earthquake Science, 28(1), 71-86.‏
  34. Benites, R., Aki, K., & Yomogida, K. (1992). Multiple scattering of SH waves in 2-D media with many cavities. pure and applied geophysics, 138(3), 353-390.
  35. Takemiya, H., & Fujiwara, A. (1994). SH-wave scattering and propagation analyses at irregular sites by time domain BEM. Bulletin of the Seismological Society of America, 84(5), 1443-1455.‏
  36. Kamalian, M., Gatmiri, B. and Sohrabi-Bidar, A., 2003. On time-domain two-dimensional site response analysis of topographic structures by BEM, J. Seism. Earthq. Eng., 5(2), 35-45.
  37. Kamalian, M., Jafari, M. K., Sohrabi-Bidar, A., Razmkhah, A. and Gatmiri, B., 2006. Time-domain two dimensional site response analysis of non-homogeneous topographic structures by a hybrid FE/BE method, Soil Dyn. Earthq. Eng., 26(8), 753-765.
  38. Kamalian, M., Gatmiri, B., Sohrabi-Bidar, A. and Khalaj, A., 2007. Amplification pattern of 2D semi-sine shaped valleys subjected to vertically propagating incident waves, Commun. Numer. Methods Eng., 23(10), 871– 887.
  39. Kamalian, M., Jafari, M. K., Ghayamghamian, M. R., Shafiee, A., Hamzehloo, H., Haghshenas, E., & Sohrabi-Bidar, A. (2008). Site effect microzonation of Qom, Iran. Engineering Geology, 97(1), 63-79.‏
  40. Alielahi, H., Kamalian, M., Asgari Marnani, J., Jafari, M. K., & Panji, M. (2013). Applying a time-domain boundary element method for study of seismic ground response in the vicinity of embedded cylindrical cavity. International Journal of Civil Engineering, 15(1), 45-54.‏
  41. Rice, J.M. and Sadd, M.H., 1984b. A note on computing elastodynamic full field displacements arising from subsurface singular sources, Mech. Res. Comm., 11(6), 385-390.
  42. Belytschko, T. and Chang, H.S., 1988. Simplified direct time integration boundary element method, J. Eng. Mech., ASCE, 114(1), 117-134.
  43. Hirai, H. (1988). Analysis of transient response of SH wave scattering in a half space by the boundary element method. Engineering analysis, 5(4), 189-194.‏
  44. Panji, M. (2013). Seismic analysis of topographic features due to propagating incident SH-waves by half-plane time-domain BEM, Ph.D. dissertation, Islamic Azad University, Science and Research Branch, Tehran, Iran (in Persian).
  45. Panji, M., Kamalian, M., Marnani, J. A., & Jafari, M. K. (2013b). Transient analysis of wave propagation problems by half-plane BEM. Geophysical Journal International, 194(3), 1849-1865.
  46. Panji, M., Kamalian, M., Marnani, J.A., & Jafari, M.K.(2013c). Antiplane seismic response from semi-sine shaped valley above embedded truncated circular cavity: a time-domain half-plane BEM. Int. J. Civil Eng., 12(2), 193-206.
  47. Panji, M., Kamalian, M., Marnani, J. A., & Jafari, M. K. (2014a). Amplification pattern of semi-sine shaped valleys subjected to vertically propagating incident SH waves, J. Computational Methods Eng., 32(2), 87-111 (in Persian).
  48. Panji, M., Kamalian, M., Marnani, J. A., & Jafari, M. K. (2014b). Analysing seismic convex topographies by a half-plane time-domain BEM. Geophysical Journal International, 197(1), 591-607.
  49. Morse, P.M. & Feshbach, H., 1953. Methods of Theoretical Physics, McGraw-Hill Book Company, McGraw-Hill Book Company, New York.
  50. Eringen, A.C. & Suhubi, E.S., 1975. Elastodynamics, Academic Press, New York.
  51. Brebbia, C.A. & Dominguez, J., 1989. Boundary Elements, an Introductory Course, Computational Mechanics Publications, Southampton, UK.
  52. Dominguez, J., 1993. Boundary Elements in Dynamics, Computational Mechanics Publications, Southampton, UK.
  53. Ohtsu, M. & Uesugi, S., 1985. Analysis of SH wave scattering in a half space and its applications to seismic responses of geological structures, Eng. Anal., 2(4), 198–204.