اثرات آب میان‌دانه‌ای بر رفتار برشی ماسه مرطوب: بررسی با آزمایش‌های برش‌مستقیم و مدل‌سازی فیزیکی گسلش

نوع مقاله : Articles

نویسندگان

1 پژوهشگاه بین‌المللی زلزله‌شناسی و مهندسی زلزله، تهران

2 پژوهشکده مهندسی ژئوتکنیک، پژوهشگاه بین‌المللی زلزله‌شناسی و مهندسی زلزله، تهران

چکیده

وجود آب میان‌دانه‌ای باعث ایجاد چسبندگی ظاهری در خاک‌های دانه‌ای و تغییر رفتار برشی آنها می‌شود. همین چسبندگی ظاهری اندک، اثرات بزرگی بر پدیده‌های ژئوتکنیکی همچون گسلش سطحی دارد. در این تحقیق، اثر آب میان‌دانه‌ای بر تغییر رفتار برشی خاک‌های دانه‌ای مورد مطالعه قرار گرفت. از آزمایش‌های برش مستقیم و مدل‌سازی فیزیکی گسلش برای بررسی استفاده شد. رفتار برشی خاک‌های خشک، مرطوب (با رطوبت 5%، 10% و 15%) و اشباع در نه تنش قائم بین 015/0 تا 25/1kgf/cm2  با استفاده از دستگاه برش مستقیم بررسی شدند. وجود رطوبت در سربارهای کم موجب انحنای پوش گسیختگی و در نتیجه تغییر خصوصیات ژئومکانیکی خاک می‌شود. در عین ناچیز بودن چسبندگی در این حالت، افزایش زاویه اصطکاک داخلی مشاهده شده است. وجود رطوبت در تنش‌های کم، با کاهش کرنش گسیختگی خاک، رفتاری تُرد در آن ایجاد می‌کند. تغییر رفتار خاک در تنش‌های بالا نیز مورد بحث قرار گرفته است. نتایج مدل‌سازی فیزیکی نشان می‌دهد که رفتار گسلش در خاک‌های دارای چسبندگی ظاهری، متفاوت از خاک‌های دانه‌ای غیر چسبنده است. عرض باند برشی ایجادشده و میزان جابه‌جایی مورد نیاز گسل در سنگ ‌بستر برای رسیدن گسلش به سطح زمین در خاک‌های مرطوب کمتر از خاک‌های خشک بوده و با درصد رطوبت ارتباط دارد. همخوانی کاملی بین مشاهدات حاصل از آزمایش‌ها مشاهده می‌شود.

کلیدواژه‌ها


  1. Likos, W.J. and Lu, N. (2004) Hysteresis of capillary stress in unsaturated granular soil. J. Eng. Mech., 130, 646-655.
  2. Mitarai, N. and Nori, F. (2006) Wet granular materials. Advances in Physics. 55(1-2), 1-45.
  3. Lu, N., Wu, B. and Tan, C.P. (2007) Tensile strength characteristics of unsaturated sands. J. Geotech. Geoenviron. Eng., 133, 144-154.
  4. Anastasopoulos, I. and Gazetas, G. (2007) Foundation-structure systems over a rupturing normal fault: Part I. Observations after the Kocaeli 1999 earthquake. Bulletin of Earthquake Engineering, 5(3), 253–275.
  5. Anastasopoulos, I. and Gazetas, G. (2007) Foundation-structure systems over a rupturing normal fault: Part II. Analysis of the Kocaeli case histories. Bulletin of Earthquake Engineering, 5(3), 277–301.
  6. Sugimura, Y., Miura S. and Konagai, K. (2001) Damage to Shihkang dam inflicted by faulting In the September 1999 ChiChi earthquake. Seismic Fault Induced Failures, 143-154.
  7. Kelson, K.I., Kang, K.H., Page, W.D., Lee, C.T., and Cluff, L.S. (2001) Representative styles of deformation along the Chelungpu fault from the 1999 Chi-Chi (Taiwan) earthquake: Geomorphic Characteristics and Responses of Man-Made Structure. Bulletin of the Seismological Society of America, 91(5), 930–952.
  8. Johansson, J. and Konagai, K. (2006) Fault induced permanent ground deformations-an experimental comparison of wet and dry soil and implications for buried structures. Soil Dyn. Earthq. Eng., 26, 45–53. doi: 10.1016/j.soildyn.2005.08.003.
  9. Lin, M., Chung, C. and Jeng, F. (2006) Deformation of overburden soil induced by thrust fault slip. Eng. Geol., 88(1-2), 70–89.
  10. Moosavi, S.M., Jafari, M.K., Kamalian, M. and Shafiee, A. (2010) Experimental investigation of reverse fault rupture – rigid shallow foundation interaction. Int. J. Civil Eng., 8(2), 85-98.
  11. Ashtiani, M., Ghalandarzadeh, A. and Towhata, I. (2016) Centrifuge modeling of shallow embedded foundations subjected to reverse fault rupture. Canadian Geotech. J., 53(3), 505-519.
  12. Oettle, N. and Bray, J. (2013) Fault rupture propagation through previously ruptured soil. J. Geotech. Geoenv. Eng., 139(10), 1637-1647.
  13. Rojhani, M., Moradi, M., Galandarzadeh, A., and Takada, S. (2012) Centrifuge modeling of buried continuous pipelines subjected to reverse faulting. Canadian Geotech. J., 49, 659-670.
  14. Kiani, M., Ghalandarzadeh, A., Akhlaghi, T., and Ahmadi, M. (2016) Experimental evaluation of vulnerability for urban segmental tunnels subjected to normal surface faulting. Soil Dyn. Earthq. Eng., 89, 28-37.
  15. Fadaee, M., Anastasopoulos, I., Gazetas, G., Jafari, M.K. and Kamalian, M. (2013) Soil bentonite wall protects foundation from thrust faulting: analyses and experiment. Earthq. Eng. Eng. Vib., 12(3), 473-486.
  16. Bransby, M.F., Davies, M.C., and El Nahas, A. (2008) Centrifuge modelling of normal fault-foundation interaction. Bull. Earthquake Eng., 6, 585-605.
  17. Bray, J., Seed, R., Ciuff, L., and Seed, H. (1994) Earthquake fault rupture propagation through soil. J. Geotech. Eng., 120(3), 543-561.
  18. Bray, J., Seed, R., Ciuff, L., and Seed, H. (1994) Analysis of Earthquake fault rupture propagation through cohesive soil. J. Geotech. Eng., 120(3), 562-580.
  19. Roth, W.H., Kalsi, G., Papastamatiou, O., and Cundall, P.A. (1982) Numerical modeling of fault propagation in soil. Proceedings of 4th Int. Conf. on Num. Meth. Geomech., 487-494.
  20. Lazarte, C.A. (1996) The Response of Earth Structures to Surface Fault Rupture. Ph.D. Dissertation. University of California, Berkeley.
  21. Sandford, A.R. (1959) Analytical and experimental study of simple geologic structures. Geolog. Society America Bull., 70(1), 19-52.
  22. Belousov, B.B. (1961) Experimental geology. Scientific American, 96-106.
  23. Bray, J.D. (1990) The Effect of Tectonic Movements on Stresses and Deformations in Earth Embankment. Ph.D. Dissertation, University of California Berkeley.
  24. Sutherland, H.B. (1988) Uplift resistance of soils. Geotechnique, 38(4), 493-516.
  25. Ahmadi, M., Jafari, M.K., and Moosavi, M. (2016) An investigation on the effect of water content on strength parameters of granular soil - Its application on 1-g physical modeling. 5th Int. Conf. Geotechnical Eng. Soil Mech., Tehran, Iran (in Persian).
  26. Ahmadi, M., Moosavi, M., and Jafari, M.K. (2017) Water content effect on the fault rupture propagation through wet soil-Using direct shear tests. Adv. Lab. Test Model Soils Shales (ATMSS) Springer Series Geomech. Geoeng., 131-138.
  27. Fukushima, S. and Tatsuoka, F. (1984) Strength and deformation characteristics of saturated sand at extremely low pressures. Soils and Foundations, 24(4), 30-48.