بررسی رفتار جانبی قاب میان‌پر تحت اثر بار قائم

نوع مقاله : Articles

نویسندگان

1 دانشگاه صنعتی خواجه نصیرالدین طوسی

2 پژوهشکده مهندسی سازه، پژوهشگاه بین‌المللی زلزله شناسی و مهندسی زلزله

3 دانشکده مهندسی عمران، دانشگاه صنعتی خواجه نصیرالدین طوسی

چکیده

هدف اصلی این مطالعه بررسی تأثیر بار قائم بر رفتار جانبی قاب میان­پر1 فولادی با مصالح بنایی به هنگام زلزله است. در این راستا یک مطالعه آزمایشگاهی که شامل دو نمونه قاب فولادی میان­پر با مصالح بنایی تحت اثر بار جانبی و قائم می­باشد، برای بررسی انتخاب شده است. نمونه اول تحت اثر بار جانبی و نمونه دوم تحت اثر بار جانبی و بار قائم قرار گرفته است. مدل اجزای محدود این دو نمونه آزمایشگاهی ساخته شده و بر اساس نتایج آزمایشگاهی صحت‌سنجی شده­اند. سپس مدل صحت‌سنجی شده برای انجام مطالعه پارامتریک استفاده شده است. نتایج نشان‌دهنده‌ی آن است که حدوداً بیشتر از 60 درصد بار وارده بر میان‌قاب به دیوار می‌رسد و بقیه آن توسط تیر بالایی به ستون‌ها منتقل می‌گردد. بر اساس نتایج، مقاومت جانبی نهایی و سختی قاب میان­پر با افزایش بار قائم بر میان‌قاب تا 200 کیلونیوتن (که 128 کیلونیوتن آن معادل 7/6 درصد مقاومت فشاری آجرکاری به دیوار بنایی می‌رسد) به‌ترتیب 15 و 50 درصد افزایش پیدا می‌کنند. اما مقاومت جانبی بعد از افزایش بار قائم از 7/6 درصد به 2/10 درصد مقاومت فشاری آجرکاری کاهش می‌یابد. سختی نیز بعد از رسیدن بار قائم از 2/10 درصد به 7/13 درصد مقاومت فشاری آجرکاری تغییر چندانی پیدا نمی‌کند. می‌توان گفت که بار قائم تا مقدار مشخصی باعث افزایش سختی و مقاومت جانبی میان‌قاب خواهد شد و بعد از آن مقدار سختی تقریباً ثابت باقی می‌ماند و مقاومت جانبی نهایی کاهش پیدا می‌کند.

کلیدواژه‌ها


عنوان مقاله [English]

On the Influence of Vertical Loading on the Behavior of Infilled Steel Frames

نویسندگان [English]

  • Kaveh Faraji 1
  • Majid Mohammadi 2
  • Nader Fanaei 3
1 KNTU University, Tehran, Iran
2 IIEES, Tehran, Iran
3 KNTU University, Tehran, Iran
چکیده [English]

IntroductionIn the last six decades, several experimental and analytical researches have been carried out to investigate the structural effects of the infill panels, especially in seismic loads. These studies showed that infill panels have considerable effects on the performance of infilled frames that should not be neglected in a safe and realistic design.In most of the buildings that require seismic retrofit, beams are not sufficient for the dead and live loads, and therefore, part of the vertical load is transferred to the ground through the walls. However, in most of the researches on infilled frames, the vertical load is not considered. In other words, very few studies investigate the effect of vertical load and its influence on the behavior of an infilled frame. These researches show that vertical load can have considerable effects on the strength and stiffness of masonry infilled frames.Research ProcedureThispaper presents a numerical study concerning the effects of vertical loads on the behavior of masonry infilled steel frame in seismic events. In this regard, an experimental study is selected that includes two identical infilled frame specimens [1]. One ofthe specimens is only subjected to lateral loading and the other one is subjected to lateral and vertical loading. Finite element method is employed to simulate and analyze the infilled frames. The specimens are modeled and verified based on the corresponding experimental results. Micro modeling method has been used, instead of modeling the mortar, half of its thickness is added to adjacent bricks. Concrete damage plasticity (CDP) approach was used to model the inelastic behavior of the masonry.ResultsThe analysisresults showed that the finite element modeling is well capable of predicting the behavior of the infilled frames. The initial stiffness of the analytical model matches with the experimental stiffness; however, as the loading continues, the strength of the finite element models is greater than that of the experimental specimen. This difference is due to the fact that the experimental specimen is subjected to cyclic loading and therefore experiences more strength degradation than the finite element model that is under monotonic loading. Based on the finite element study, the vertical load applied to the infilled frame is distributed in two ways, part of it (approximately 40%) is transferred through beam to column connection and the other part (approximately 60%) is applied to the wall. When the vertical load raises from zero to 200 kN (in which the vertical loading of 128 kN that is equivalent to 6.7% of compression capacity of the masonry prism is transferred to the masonry wall), strength and stiffness are increased 15% and 50%, respectively. The strength reduces when the vertical loading raises reach from 200 to 300 kN, and the stiffness remains constant approximately after vertical loading of 300 kN. It can be stated that up to a certain point, vertical load results in the increase in the stiffness and strength of the infilled frame, and after that point, the stiffness approximately remains constant and ultimate strength decreases.This occurrence can be justified as until a particular values vertical load increasesthe friction between the bricksandthus increases the strength. However, after this value, the vertical load turns into a destructive factor in combination with the lateral load effects. Ductility of the specimen with vertical loading of 200 kN is less than that of the specimen without the vertical loading.

کلیدواژه‌ها [English]

  • Masonry infill
  • Steel Frame
  • Vertical Loading
  • Finite element modeling
  1. Elghazouli, A.Y. (2016) Seismic Design of Buildings to Eurocode 8. CRC Press.
  2. Fardis, M.N. (2000) Design provisions for masonry-infilled RC frames. Proceedings of 12th World Conference on Earthquake Engineering.
  3. Benjamin, J.R., Williams, H.A. (1958) The Behavior of One-Story Brick Shear Walls. ASCE, p.30.
  4. Wood, R.H. (1958) The stability of tall buildings. ICE Proceedings, Thomas Telford.
  5. Liu, Y. and Soon, S. (2012) Experimental study of concrete masonry infills bounded by steel frames. Canadian Journal of Civil Engineering, 39(2), 180-190.
  6. Mainstone, R.J. and Weeks, G. (1972) The Influence of a Bounding Frame on the Racking Stiffness and Strengths of Brick Walls. Building Research Station.
  7. Mehrabi, A.B., Shing, P.B., Schuller, M.P. and Noland, J.L. (1996) Experimental evaluation of masonry-infilled RC frames. Journal of Structural Engineering, 122, 228-237.
  8. Polliakov, S.V.E. (1963) Masonry in Framed Buildings: An Investigation into the Strength and Stiffness of Masonry Infilling. National Lending Library for Science and Technology.
  9. Holmes, M. (1961) Steel frames with brickwork and concrete infilling. ICE Proceedings, Thomas Telford.
  10. Chrysostomou, C., Gergely, P. and Abel, J. (2002) A six-strut model for nonlinear dynamic analysis of steel infilled frames. International Journal of Structural Stability and Dynamics, 2(03), 335-353.
  11. Crisafulli, F.J. and Carr, A.J. (2007) Proposed macro-model for the analysis of infilled frame structures. Bulletin of the New Zealand Society for Earthquake Engineering, 40(2), 69-77.
  12. Madan, A., Reinhorn, A., Mander, J. and Valles, R. (1997) Modeling of masonry infill panels for structural analysis. Journal of Structural Engineering, 123, 1295-1302.
  13. Barua, H. and Mallick, S. (1977) Behaviour of mortar infilled steel frames under lateral load. Building and Environment, 12(4), 263-272.
  14. Smith, B.S. and Carter, C. (1969) A method of analysis for infilled frames. ICE Proceedings, Thomas Telford.
  15. Choudhury, T., Milani, G. and Kaushik, H.B. (2015) Comprehensive numerical approaches for the design and safety assessment of masonry buildings retrofitted with steel bands in developing countries: The case of India. Construction and Building Materials, 85, 227-246.
  16. Lafuente, M., Molina, A. and Genatios, C. (2000) Seismic resistant behavior of minor reinforced concrete frames with masonry infill walls. 12WCEE.
  17. Liu, Y. and Manesh, P. (2013) Concrete masonry infilled steel frames subjected to combined in-plane lateral and axial loading–An experimental study. Engineering Structures, 52, 331-339.
  18. Mohammadi, M. (2014) On The Influence of Bay Number, Vertical Load and Connection Rigidity of the Frame on the Behavior of Masonry Infilled Frames. Technical report No. 7386, International Institute of Earthquake Engineering and Seismology (in Persian).
  19. Hibbit, H., Karlsson, B. and Sorensen, E. (2012) ABAQUS User Manual, Version 6.12. Simulia, Providence, RI. 2012.
  20. Committee, A.S.S.R.S. (2007) Seismic Rehabilitation of Existing Buildings, ASCE/SEI 41-06). American Society of Civil Engineers, Reston, VA, USA.
  21. Mohyeddin, A., Goldsworthy, H.M. and Gad, E.F. (2013) FE modelling of RC frames with masonry infill panels under in-plane and out-of-plane loading. Engineering Structures, 51, 73-87.
  22. Lourenco, P.B. (1996) Computational Strategies for Masonry Structures. TU Delft, Delft University of Technology.
  23. Aref, A.J. and Dolatshahi, K.M. (2013) A three-dimensional cyclic meso-scale numerical procedure for simulation of unreinforced masonry structures. Computers & Structures, 120, 9-23.
  24. Kumar, N., Amirtham, R. and Pandey, M. (2014) Plasticity based approach for failure modelling of unreinforced masonry. Engineering Structures, 80, 40-52.
  25. Moghaddam, H. and Goudarzi, N. (2010) Transverse resistance of masonry infills. ACI Structural Journal, 107(4), 461.
  26. Minaie, E., Moon, F.L. and Hamid, A.A. (2014) Nonlinear finite element modeling of reinforced masonry shear walls for bidirectional loading response. Finite Elements in Analysis and Design, 84, 44-53.
  27. Moradabadi, E., Laefer, D.F., Clarke, J.A. and Lourenço, P.B. (2015) A semi-random field finite element method to predict the maximum eccentric compressive load for masonry prisms. Construction and Building Materials, 77, 489-500.
  28. Page, A. (1981) The biaxial compressive strength of brick masonry. ICE Proceedings, Thomas Telford.
  29. Agnihotri, P., Singhal, V. and Rai, D.C. (2013) Effect of in-plane damage on out-of-plane strength of unreinforced masonry walls. Engineering Structures, 57, 1-11.
  30. Pereira, J.M., Campos, J. and Lourenço, P.B. (2015) Masonry infill walls under blast loading using confined underwater blast wave generators (WBWG). Engineering Structures, 92, 69-83.
  31. Krätzig, W.B. and Pölling, R. (2004) An elasto-plastic damage model for reinforced concrete with minimum number of material parameters. Computers & Structures, 82(15), 1201-1215.
  32. Kaushik, H.B., Rai, D.C. and Jain, S.K. (2007) Stress-strain characteristics of clay brick masonry under uniaxial compression. Journal of materials in Civil Engineering, 19(9), 728-739.
  33. Dhanasekar, M. and Haider, W. (2008) Explicit finite element analysis of lightly reinforced masonry shear walls. Computers & Structures, 86(1), 15-26.