طراحی و ساخت جعبه برش دو بخشی جهت مدل‌سازی گسلش عادی و معکوس در دستگاه سانتریفیوژ ژئوتکنیکی

نوع مقاله : Articles

نویسندگان

1 گروه زمین‌شناسی، دانشکده علوم، دانشگاه فردوسی مشهد

2 دانشکده مهندسی عمران، پردیس دانشکده‌های فنی، دانشگاه تهران

چکیده

در اثر جابه‌جایی ریز صفحات نسبت به همدیگر امواج لرزه‌ای و شکست گسل شکل می‌گیرد که با توجه به عمق، میزان جابه‌جایی، نوع جابه‌جایی، شرایط زیرسطحی پیامدهای متنوعی را بر روی سطح زمین از خود نشان می‌دهد. تاکنون مطالعات محدودی بر روی گسلش سطحی صورت گرفته است اما به دنبال وقوع سه زمین‌لرزه چی‌چی تایوان، دوزجی وکوجاعلی ترکیه انجام چنین مطالعاتی شتاب گرفته است. با توجه به از بین رفتن سریع شواهد سطحی گسلش و کم بودن زمان بررسی‌ها از یک طرف و زمان‌بر بودن و بالا بودن هزینه ساخت نمونه‌های بزرگ‌مقیاس (شرایط 1g) از طرف دیگر، اهمیت مطالعات گسلش در شرایط گرانش تشدید شده (Ng) به کمک دستگاه سانتریفیوژ را آشکار می‌کند. در این تحقیق ابتدا جزئیات جعبه دو بخشی گسلش مورد استفاده تشریح شده است. سپس نتایج هفت آزمایش شبیه‌سازی گسلش انجام شده به کمک این جعبه ارائه شده است. پنج آزمایش اولیه به‌منظور کالیبراسیون جعبه و کاهش شرایط مرزی بوده است و دو آزمایش نیز به شبیه‌سازی گسلش عادی و معکوس-  بعد از کسب شرایط مطلوب – بر روی خاک‌های دانه‌ای پرداخته است سپس نتایج مقدار جابه‌جایی منتقل شده به سطح زمین، میزان جابه‌جایی مورد نیاز سنگ کف جهت ظهور گسل در سطح، تغییر زاویه گسل از سنگ کف تا سطح زمین، وسعت منطقه تغییر شکل در گسلش معکوس و عادی با همدیگر مقایسه شده است.

کلیدواژه‌ها


  1. Faccioli, E., Anastasopoulos, I., Gazetas, G., Callerio, A. and Paolucci, R. (2008) Fault rupture foundation interaction: selected case histories. Bull. Earthquake Engineering, 557–583.
  2. Oakeshott, G. (1973) ‘Some case histories, the association of engineering geologists, reprinted from geology’. In: Patterns of Ground Ruptures in Fault Zones Coincident with Earthquakes, Special publication. 287–312.
  3. Brune, J. and Allen, C. (1967) A low-stress-drop, low magnitude earthquake with surface. Bull Seismology Soc., 57, 501–514.
  4. Doser, D. and Smith, R. (1988) Source parameters of the 28 October 1983 Borah Peak, Idaho. Bull Seismology Soc., 75, 1041–1051.
  5. Gur, T. and Sozen, M.A. (2004) An investigation of the earthquake effects on articulated bridge located on fault ruptures. 13th World Conference on Earthquake Engineering, Vancouver, B.C., 1-6 August, Paper No. 1029, Canada.
  6. Lin, A., Rao, G., and Yan, B. (2012) Field evidence of rupture of the Qingchuan Fault during the 2008 Mw7.9 Wenchuan earthquake, northeastern segment of the Longmen Shan Thrust Belt, China. Tectonophysics, 522–523, 243–252.
  7. Lin, C.W., Lee, Y.L., Huang, M.L., Lai, W.C., Yuanc, B.D. and Huang, C.Y. (2004) Characteristics of surface ruptures associated with the Chi-Chi earthquake of September 21, 1999. Engineering Geology, 71(1-2), 13–30.
  8. Zare, M. (2005) An Introduction to Applied Seismology. International Institute of Earthquake Engineering and Seismology, Tehran (in Persian).
  9. Burridge, P.B. (1987) ‘Soil mechanics laboratory failure of slopes’. In: Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy, California Institute of Technology, Pasadena, California.
  10. Loukidis, D., Bouckovalas, G.D. and Papadimitriou, A.G. (2009) Analysis of fault rupture propagation through uniform soil cover. Soil Dynamics and Earthquake Engineering, 29(11–12), 1389–1404.
  11. Maa, K.F. and Chiao L-Y. (2003) Rupture behavior of the 1999 Chi-Chi, Taiwan, earthquake-slips on a curved fault in response to the regional plate convergence. Engineering Geology, 71, 1–11.
  12. Johansson, J. and Konagai, K. (2006) Fault induced permanent ground deformations-an experimental comparison of wet and dry soil and implications for buried structures. Soil Dynamics and Earthquake Engineering, 26, 45–53.
  13. Anastasopoulos, I. and Gazetas, G. (2010) Analysis of cut and cover tunnels against large tectonic deformation. Bulletin of Earthquake Engineering, 8(2), 283–307.
  14. Ng, C.W.W., Cai, Q.P. and Hu, P. (2012) Centrifuge and numerical modeling of normal fault-rupture propagation in clay with and without a preexisting fracture. Journal of Geotechnical and Geoenvironmental Engineering, 138(12), 1492–1502.
  15. Chang, A.A., Lee, C.J., Huang, W.C., Huang, W.Y., Huang, W.J., Linc, M.L., and Chend, Y.H. (2015) Evolution of the surface deformation profile and subsurface distortion zone during reverse faulting through overburden sand. Engineering Geology, 184, 52–70.
  16. Bray, J.D., Seed, R.B., Cluff, L.S., and Seed, H.B. (1994) Earthquake fault rupture propagation through soil. Journal of Geotechnical Engineering, 120(3), 543–561.
  17. Anastasopoulos, I., Callerio, A., Bransby, M.F., Davies, M.C.R., El Nahas, A., Faccioli, E., Gazetas, G., Masella, A., Paolucci, R., Pecker, A., and Rossignol, E. (2008) Numerical analyses of fault-foundation interaction. Bulletin of Earthquake Engineering, 6(4), 645–675.
  18. Taniyama, H. (2011) Numerical analysis of overburden soil subjected to strike-slip fault: Distinct element analysis of Nojima fault. Engineering Geology, 123, 194–203.
  19. Mortazavi Zanjani, M., Soroush, A., and Solhmirzaei R. (2012) Effect of mechanical soil parameters on fault rupture propagation through granular soils. 15th World Conference on Earthquake Engineering, Lisbon, Portugal, 24-28 September, 17929-17936.
  20. Oettle, N.K. and Bray, J.D. (2013) Fault rupture propagation through previously ruptured soil. Journal of Geotechnical and Geoenvironmental Engineering, 139(10), 1637–1647.
  21. Hazeghian, M. and Soroush, A. (2017) Numerical modeling of dip-slip faulting through granular soils using DEM. Soil Dynamics and Earthquake Engineering, 97, 155–171.
  22. Bray, J.D. (2001) Developing mitigation measures for the hazards associated with earthquake surface fault rupture. Proceedings of the Workshop on Seismic Fault-Induced Failures-Possible Remedies for Damage to Urban Facilities, 11–12 January. University of Tokyo Press, Tokyo, 55–79.
  23. Baziar, M.H., Salehzadeh, H., Kazemi, M., and Rabeti Moghadam, M. (2014) Centrifuge modeling of an underground structure subjected to blast loading. Advanced Defence Sci. & Tech., 5, 31-41 (in Persian).
  24. Craig, W.H. (2001) The seven ages of centrifuge modelling. Workshop on Constitutive and Centrifuge Modelling: Two Extremes, Monte Verità, Ascona Acad.
  25. Pokrovskii, G.I. and Fiodorov, I.S. (1936) Studies of soil pressures and deformations by means of a centrifuge. 1st Int. Conf. on Soil Mech. and Foundation Eng., 70.
  26. Roth, W.H., Scott, R.F., and Austin, I. (1981) Centrifuge modelling of fault propagation through alluvial soils. Geophysical Research Letters, 8, 561–564.
  27. Scott, R.F. (1977) Dynamic pile tests by centrifuge modeling. 6th World Conference on Earthquake Engineering, 4-50.
  28. Scott, R.F. (1979) Cyclic and static model pile tests in a centrifuge. 11th Annual Offshore Technology Conference. Paper No. 3492, 1159-1168.
  29. Tagaya, K. (1977) Fundamental study on extraction on buried anchors. 12th Conference on Soil Mechanics and Foundation Engineering, Japanese Society of Soil Mechanics and Foundation Engineering, Tokyo.
  30. Liu, H.P. and Hagman, R. L. (1978) Centrifuge modeling of earthquakes. Geophysical Research Letters, (5), 333-336.
  31. Prevost, J.H. (1981) Offshore gravity structures centrifuge modeling. Journal of Geotechnical Engineering Div., ASCE, 107.
  32. Rojhani, M., Moradi, M., Ebrahimi, M.H., Galandarzadeh, A., and Takada, S. (2012a) Recent Developments in Faulting Simulators for Geotechnical Centrifuges. Geotechnical Testing Journal, 35(6).
  33. Rojhani, M., Moradi, M., Galandarzadeh, A., and Takada, S. (2012b) Centrifuge modeling of buried continuous pipelines subjected to reverse faulting. Canadian Geotechnical Journal, 49(6), 659–670.
  34. Ashtiani, M., Ghalandarzadeh, A., and Towhata, I. (2016) Centrifuge modeling of shallow embedded foundations subjected to reverse fault rupture. Canadian Geotechnical Journal, 53, 505–519.
  35. Kiani, M., Ghalandarzadeh, A., Akhlaghi, T., and Ahmadi, M. (2016) Experimental evaluation of vulnerability for urban segmental tunnels subjected to normal surface faulting. Soil Dynamics and Earthquake Engineering, 89, 28–37.
  36. Kiani, M., Akhlaghi, T., and Ghalandarzadeh, A. (2016) Experimental modeling of segmental shallow tunnels in alluvial affected by normal faults. Tunnelling and Underground Space Technology, 51(16), 108–119.
  37. Lin, M.L., Lu, C.Y., Chang, K.J., Jeng, F.S., and Lee, C.J. (2005) Sandbox experiments of plate convergence - scale effect and associated mechanisms. TAO, 16(3), 595-620.
  38. Lee, J.W. and Hamada, M. (2005) An experimental study on earthquake fault rupture propagation through a sandy soil deposit. Structural Eng. and Earthquake Eng., 22, 1-13.
  39. Bransby, M.F., Davies, M.C.R., and Nahas A.El. (2008) Centrifuge modelling of normal fault–foundation interaction. Bull. Earthquake Eng., 6, 585–605.
  40. Bransby, M.F., Davies, M.C.R., Nahas, A.El., and Nagaoka, S. (2008) Centrifuge modelling of reverse fault–foundation interaction. Bull. Earthquake Eng., 6, 607–628.
  41. Loli, M., Anastasopoulos, I., Bransby, M.F., Ahmed, W. and Gazetas, G. (2011) Caisson Foundations Subjected to Reverse Fault Rupture: Centrifuge Testing and Numerical Analysis. Journal of Geotechnical and Geoenvironmental Engineering, 137, 914-925.
  42. Taniyama, H, and Watanabe, B. (2001) Deformation of sandy deposits by reverse faulting. Seismic Fault-induced Failures, 135-142.
  43. Cai, Q.P., Ng, C.W.W., Luo, G.Y., and Hu, P. (2013)
  44. Influences of pre-existing fracture on ground deformation induced by normal faulting in mixed ground conditions. J. Cent. South Univ., 20, 501–509.
  45. Feng, S. (2004) Centrifuge Modelling of Tunnel-Pile Interaction. A thesis submitted for the degree of master of engineering, National University of Singapore.
  46. Farahmand, K., Lashkari A., and Ghalandarzadeh, A. (2016) Firoozkuh sand: introduction of a benchmark for geomechanical studies. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 40, 133–148.
  47. Cai, Q.P., Hu, P., Van Laak, P., Ng, C.W.W. and Chiu, A.C.F. (2010) Investigation of boundary conditions for simulating normal fault propagation in centrifuge. The 4th International Conference on Geotechnical Engineering and Soil Mechanics, Tehran, 2-3 November 2010, Iran.
  48. Anastasopoulos, I. and Gazetas, G. (2007a) Foundation–structure systems over a rupturing normal fault: Part I. Observations after the Kocaeli 1999 earthquake. Bull. Earthquake Eng., 5, 253–275.
  49. Anastasopoulos, I. and Gazetas, G. (2007b) Foundation-structure systems over a rupturing normal fault: part II- Analysis of the Kocaeli case histories. Bull. Earthquake Eng., 5, 277-301.
  50. Bonilla, M.G. (1988) Minimum earthquake associated with coseismic surface faulting. Bulletin of the Association of Environmental & Engineering Geologists, 1, 17-29.
  51. Cole, D.A. and Lade, P.V. (1984) Inï‌‚uence zones in alluvium over dip-slip faults. Journal of Geotechnical Engineering, 110(5), 599–615.
  52. Anastasopoulos, I., Gazetas, G., Bransby, M.F., Davies, M.C.R. and El Nahas, A., (2007) Fault rupture propagation through sand: finite-element analysis and validation through Centrifuge experiments. Journal of Geotechnical and Geoenvironmental Engineering, 133(8), 943-958.
  53. Mortazavi Zanjani, M. and Soroush, A. (2014) Numerical modeling of fault rupture propagation through two-layered sands. Scientia Iranica, 21, 19-29.
  54. Yongshuang, Z., Jusong, S., Ping, S., Weimin, Y., Xin, Y., Chunshan, Z., and Tanyu, X. (2013) Surface ruptures induced by the Wenchuan earthquake: Their influence widths and safety distances for construction sites. Engineering Geology, 166, 245 – 254.
  55. Lade, P.V., Cole, D.A., and Cummings, D. (1984) Multiple failure surfaces over dip-slip faults. Journal of Geotechnical Engineering, 110(5), 616–627.
  56. Batatian, D. (2002) Minimum standards for surface fault rupture hazard special studies. Salt Lake County Geologic Hazards Ordinance. Chapter 19.75, Appendix A.