به‌روز رسانی مدل اجزای محدود سازه سه‌بعدی با روش بهینه‌سازی بهبود یافته مبتنی بر حساسیت

نوع مقاله : Articles

نویسندگان

1 دانشگاه آزاد اسلامی، واحد قزوین، گروه مهندسی عمران- مهندسی سازه، قزوین، ایران

2 پژوهشگاه زلزله‌شناسی و مهندسی زلزله، تهران، ایران

چکیده

امروزه در اختیار داشتن یک مدل تحلیلی دقیق از سازه که بتواند رفتار حقیقی آن را در هنگام بارگذاری‌های شدید نشان دهد بسیار حائز اهمیت است. به این‌روند به ‌روز ‌رسانی مدل اجزای محدود سازه گفته می‌شود که از طریق آن موقعیت و شدت آسیب‌های وارده به سازه را نیز می‌توان مشخص نمود. هدف این مقاله، به ‌روز ‌رسانی مدل اجزای محدود سازه‌ سه‌بعدی از طریق یک روش بهینه‌سازی تکرار شونده مبتنی بر حساسیت، موسوم به روش ناحیه اطمینان گاوس نیوتن است که به‌منظور کاهش تعداد پارامترهای به‌ روز ‌رسانی با رویکردی جدید طی چندین مرحله‌ی تکرار شونده، به شیوه‌ی تصحیح ماتریس سختی هر یک از المان‌های مدل تحلیلی سازه از طریق کمینه نمودن اختلاف میان فرکانس‌ها و شکل‌های مدی سازه‌ی حقیقی و مدل عددی آن انجام پذیرفته است. برای اطمینان از صحت عملکرد روند پیشنهادی، این مدل بر روی چندین الگوی آسیب از یک سازه‌ی فولادی سه‌طبقه با سیستم دوگانه قاب خمشی و قاب مهاربندی پیاده‌سازی شد. نتایج ارزیابی‌ها حاکی از صحت و دقت روش پیشنهادی در تشخیص المان‌های سالم، محل و شدت آسیب‌‌های وارده به سازه با حداقل خطای ممکن می‌باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Finite Element Model Updating Method for 3D Structures Using Improved Sensitivity-Based Optimization Methods

نویسندگان [English]

  • Pouyan Farhadi Yeganeh 1
  • Omid Bahar 2
1 Islamic Azad University, Structural Engineering Department, Qazvin Branch, Qazvin, Iran
2 Structural Engineering Research Centre, International Institute of Earthquake Engineering and Seismology (IIEES), Tehran, Iran
چکیده [English]

Roughly since the 1990s, the model updating problem in fields such as design, construction, repair and maintenance of mechanical systems and civil structures has been a very important, challenging, and developing subject. In general, in the model updating methods, an analytical model of a structure, which is usually formed based on its as built data by using of the finite element method, is corrected considering a set of experimental measured data obtained from vibration of the concerned structure. In fact, the main purpose of the model updating methods is to correct some structural parameters such as mass, stiffness, and damping, in order to achieve a better compromise between analytical and experimental data. We expected that a correctly updated analytical model of a structure predict dynamic behaviour of the real structure better and more accurately than its initial model. In this way, considering the structural model changes with respect to a previously constructed reference model would be measurable. On the other hand, if a structure suffers damages through some extraordinary loadings, this will also be recognizable through comparing the difference between the updated model and its reference model. In this view point, the model updating methods may be a good substitution for traditional methods of damage detection and be generally applied methods for the structural health monitoring, also seismic control and performance/behaviour evaluation of civil structures. Many methods have been developed so far in order to update finite element model of civil structures, which are generally categorized in two main groups including direct and indirect or iterative methods. In the direct methods, mass and stiffness matrices of the structure are directly updated during one step. In these methods, there is no direct relation between elements of the structural matrices and structural physical parameters. Therefore, although the updated matrices obtained from these methods have a relatively acceptable accuracy in predicting linear structural behaviour, todays they are rarely used in updating the model of real structures. On the other hand, among the researchers, the iterative methods, because directly use of sensitivity and variations of structural physical parameters to update structural models are more acceptable. Modal parameters of the structure including the natural frequencies and mode shapes are one of the most widely used data in these methods. However, since there is always a non-linear relationship between the modal data and physical parameters, the updating problem in this method is turned into a nonlinear least squares problem that must be solved using the iterative optimization methods. In these methods, the errors between the numerical results and the measured ones are considered as the objective function of the optimization problem. By minimizing the objective function by changing some pre-determined physical structural parameters of the initial analytical finite element model, through an iterative updating method, location and severities of damages are detected, as well as the correct physical parameters. This study aims at updating the finite element model of 3D structures performed through a sensitivity-based iterative optimization method known as the trust region Gauss-Newton method. This is done through finding the best values for the elemental stiffness parameters in analytical model through minimizing the difference between the frequencies and mode shapes of the real and damaged structure. Moreover, in order to reduce the number of updating parameters and avoid singularity problems due to usual numerical errors in the process of solving large-scale optimization problems, a new updating process has been implemented through several iterative stages via sequential analysis to find unknown correction factors. This process continues until the results from the two final analyses are very close during an acceptable accuracy. In order to examine performance of the proposed procedure, it is implemented for detection of several damage scenarios of a 3D three-story steel dual system of an MR structure equipped by a bracing system. Extensive analyses show that, the proposed method is a powerful model updating method to detect location and severity of sparse/minor damages of large-scale structures with the minimum possible error.

کلیدواژه‌ها [English]

  • Finite Element Model Updating
  • 3D Structural Model
  • Sensitivity-Based Method
  • Trust Region Optimization Algorithm
  • Modal Data
  • damage detection
  1. Meruane, V. (2013) Model updating using antiresonant frequencies identified from transmissibility functions. Journal of Sound and Vibration, 332, 807–820.
  2. Jaishi, B. and Ren, W-X. (2006) Damage detection by finite element model updating using modal flexibility residual. Journal of Sound and Vibration, 290, 369–387.
  3. CHA, P.D. and GU, W. (2000) Model updating using an incomplete set of experimental modes. Journal of Sound and Vibration, 233(4), 587-600.
  4. Giurgiutiu, V. (2014) Structural Health Monitoring with Piezo Electric Wafer Active Sensors (second edition). University of South Carolina, Department of Mechanical Engineering, Columbia, SC, USA.
  5. Farrar, C.R. and Doebling, S.W. (1997) An Overview of Modal Based Damage Identification Methods. Engineering Analysis Group, Los Alamos National Laboratory.
  6. Chakraborty, S. and Sen, A. (2014) Adaptive response surface based efficient Finite Element Model Updating. Finite Elements in Analysis and Design, 80, 33–40.
  7. Friswell, M.I. and Mottershead, J.E. (1995) Finite Element Model Updating in Structural Dynamics. Kluwer Academic Publishers, Dordrecht, the Netherlands.
  8. Hu, S-L.J. and Li, H. and Wang, S. (2007) Cross-model cross-mode method for model updating. Mechanical Systems and Signal Processing, 21, 1690–1703.
  9. Jaishi, B. and Ren, W-X. (2007) Finite element model updating based on eigenvalue and strain energy residuals using multiobjective optimisation technique. Mechanical Systems and Signal Processing, 21, 2295–2317.
  10. Marwala, T. (2010) Finite-element-model Updating Using Computational Intelligence Techniques: Applications to Structural Dynamics. Springer-Verlag, Springer, London.
  11. Teughels, A. and De Roeck, G. (2004) Structural damage identification of the highway bridge Z24 by FE model updating. Journal of Sound and Vibration, 278, 589–610.
  12. Petersen, Ø.W. (2017) Sensitivity-based finite element model updating of a pontoon bridge. Journal of Engineering Structures, 150(1),
  13. November, 573-584.
  14. Teughels, A. and Maeck, J., and De Roeck, G. (2002) Damage assessment by FE model updating using damage functions. Computers and Structures, 80, 1869–1879.
  15. Teughels, A. and De Roeck, G., and Suykens, J.A.K. (2003) Global optimization by coupled local minimizers and its application to FE model updating. Computers and Structures, 81, 2337–2351.
  16. Teughels, A. and De Roeck, G. (2005) Damage detection and parameter identification by finite element model updating. Archives of Computational Methods in Engineering. 12(2), 123-164.
  17. Bakir, P.G. and Reynders, E., and De Roeck, G. (2007) Sensitivity-based finite element model updating using constrained optimization with a trust region algorithm. Journal of Sound and Vibration, 305, 211–225.
  18. Fang, S-E. and Perera, R., and De Roeck, G. (2008) Damage identification of a reinforced concrete frame by finite element model updating using damage parameterization. Journal of Sound and Vibration, 313, 544–559.
  19. Shan, D., Li, Q., Khan, I., and Zhou, X. (2015) A novel finite element model updating method based on substructure and response surface model. Journal of Engineering Structures, 103, 147–156.
  20. Sarmadi, H., Karamodin, A., Entezami, A. (2016) A new iterative model updating technique based on least squares minimal residual method using measured modal data. Applied Mathematical Modelling, 40(23–24), 10323-10341.
  21. Kim, G-H. and Park, Y-s. (2008) An automated parameter selection procedure for finite-element model updating and its applications. Journal of Sound and Vibration, 309, 778–793.
  22. Bader, B.W. (2009) Constrained and Unconstrained Optimization. Sandia National Laboratories, Albuquerque, NM, USA, Published by Elsevier B.V.
  23. Kattan, P.I. (2010) MATLAB Guide to Finite Elements: an Interactive Approach. Springer, Berlin Heidelberg, NewYork.
  24. Ferreira, A. (2009) MATLAB Codes for Finite Element Analysis of Solid Mechanics and its Applications. 157, Springer Verlag, Berlin.
  25. Farhadi Yegane, P. (2016) Three-Dimensional Structural Model updating using Optimization algorithms. M.Sc. Thesis on Civil Engineering-Structural Trend, Islamic Azad University, Qazvin Branch, Qazvin (in Persian).
  26. Logan, D.L. (2011) A First Course in the Finite Element Method. 4th Edition, PWS, Boston.
  27. Bhatti, M.A. (2005) Fundamental Finite Element Analysis and Applications: with Mathematical and Matlab computations. New Jersey: John Wiley & Sons, 472-5.