Matsui, T., and Oda, K. (1996) Foundation damage of structures. Soils and Foundations, 36(Special), 189-200.
Fujii, S., Isemoto, N., Satou, Y., Kaneko, O., Funahara, H., Arai, T., and Tokimatsu, K. (1998) Investigation and analysis of a pile foundation damaged by liquefaction during the 1995 Hyogoken-Nambu earthquake. Soils and Foundations, 38(Special), 179-192.
Tokimatsu, K., and Asaka, Y. (1998) Effects of liquefaction-induced ground displacements on pile performance in the 1995 Hyogoken-Nambu earthquake. Soils and Foundations, 38(Special), 163-177.
Ohtsu, H., Hatsuyama, Y., Tateishi, A., and Horikoshi, K. (1997) A study on pile foundations damaged by the 1995 Hyogoken Nambu Earthquake. Proceedings of International Conference on Deformation and progressive failure in geomechanics, 583-588.
JRA. (1996) Specification for Highway Bridges. Japan Road Association, Tokyo.
Dobry, R., and Abdoun, T. H. (2001) Recent studies on seismic centrifuge modeling of liquefaction and its effect on deep foundations. In International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamic, University of Missouri, San Diego, California.
Hamada, M., and Wakamatsu, K. (1998) A Study on Ground Displacement Caused by Soil Liquefaction. Doboku Gakkai Ronbunshu, 1998(596), 189-208.
Boulanger, R. W., Kutter, B. L., Brandenberg, S. J., Singh, P., and Chang, D. (2003) Pile foundations in liquefied and laterally spreading ground during earthquakes: centrifuge experiments & analyses. Center for Geotechnical Modeling, Department of Civil and Environmental Engineering, University of California, Davis, California.
Cubrinovski, M., and Ishihara, K. (2004) Simplified method for analysis of piles undergoing lateral spreading in liquefied soilsâ. Soils and Foundations, 44(5), 119-133.
Abdoun, T., Dobry, R., OâRourke, T., and Goh, S. (2003) Pile Response to Lateral Spreads: Centrifuge Modeling. Journal of Geotechnical and Geoenvironmental Engineering, 129(10), 869-878.
Imamura, S., Hagiwara, T., Tsukamoto, Y., and Ishihara, K. (2004) Response of pile groups against seismically induced lateral flow in centrifuge model tests. Soils and Foundations, 44(3), 39-55.
Brandenberg, S. J., Boulanger, R. W., Kutter, B. L., and Chang, D. (2005) Behavior of pile foundations in laterally spreading ground during centrifuge tests. Journal of Geotechnical and Geoenvironmental Engineering, 131(11), 1378-1391.
Cubrinovski, M., Kokusho, T., and Ishihara, K. (2006) Interpretation from large-scale shake table tests on piles undergoing lateral spreading in liquefied soils. Soil Dynamics and Earthquake Engineering, 26(2), 275-286.
Haeri, S. M., Kavand, A., Rahmani, I., and Torabi, H. (2012) Response of a group of piles to liquefaction-induced lateral spreading by large scale shake table testing. Soil Dynamics and Earthquake Engineering, 38, 25-45.
Motamed, R., and Towhata, I. (2010) Shaking table model tests on pile groups behind quay walls subjected to lateral spreading. Journal of Geotechnical and Geoenvironmental Engineering, 136(3), 477-489.
Tang, L., Zhang, X., Ling, X., Su, L., and Liu, C. (2014) Response of a pile group behind quay wall to liquefaction-induced lateral spreading: a shake-table investigation. Earthq. Eng. Eng. Vib., 13(4), 741-749.
Rollins, K. M., Lane, J. D., and Gerber, T. M. (2005) Measured and computed lateral response of a pile group in sand. Journal of Geotechnical and Geoenvironmental Engineering, 131(1), 103-114.
Ashford, S. A., Juirnarongrit, T., Sugano, T., and Hamada, M. (2006) Soilâpile response to blast-induced lateral spreading. I: field test. Journal of Geotechnical and Geoenvironmental Engineering, 132(2), 152-162.
Flac3D. (2012) Manual: User's Guide. Itasca Consulting Group, Inc.
Kuhlemeyer, R. L., and Lysmer, J. (1973) Finite element method accuracy for wave propagation problems. Journal of Soil Mechanics & Foundations Division, 99(5), 421-427.
Flac3D. (2012) Manual: Structural Elements. Itasca Consulting Group, Inc.
Flac3D. (2012) Manual: Dynamic Analysis. Itasca Consulting Group, Inc.
Byrne, P. M. (1991) A Cyclic Shear-Volume Coupling and Pore-Pressure Model for Sand. In International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics pp. 47-55, University of Missouri.
Hardin, B. O., and Drnevich, V. P. (1972) Shear Modulus and Damping in Soils: I. Measurement and Parameter Effects, II. Design Equations and Curves. Journal of Soil Mechanics and Foundation Division, 98(6), 603-624.
Das, B. M., and Ramana, G. V. (2010) Principles of Soil Dynamics, Cengage Learning.
Seed, H. B., and Idriss, I. M. (1970) Soil moduli and damping factors for dynamic response analyses. p. 40, Earthquake Engineering Research Center, University of California, Berkeley.
Hazirbaba, K., and Rathje, E. M. (2004) A comparison between in situ and laboratory measurements of pore water pressure generation. In 13th World Conference on Earthquake Engineering, Vancouver, B.C., Canada.