بررسی وابستگی سرعت موج برشی به اندازه دانه‌های خاک ماسه‌ای

نوع مقاله : Articles

نویسندگان

1 دانشکده فنی مهندسی دانشگاه رازی، کرمانشاه، ایران

2 گروه مهندسی عمران، دانشکده فنی مهندسی دانشگاه رازی، کرمانشاه، ایران

چکیده

در محدوده کرنش‌های کوچک (ε≤〖10〗^(-3)%)، سرعت موج برشی (Vs) و متعاقب آن مدول برشی حداکثر (Gmax) یکی از مؤلفه‌های اساسی برای انجام محاسبات ژئوتکنیکی و تحلیل‌ دینامیکی خاک‌ها می باشد. تأثیر اندازه دانه ها در هنگام انتشار امواج بر رفتار دینامیکی خاک، یکی از مسائل مهم و مورد بحث محققین است. در گذشته تأثیر اندازه دانه های خاک بر سرعت موج برشی، معمولاً در دامنه محدودی از اندازه دانه‌های خاک مورد برسی قرارگرفته است. اگرچه نتایج این تحقیقات، تأثیرهای متفاوت اندازه دانه های خاک بر سرعت موج برشی را نشان می دهد، اما نتیجه ای قطعی از تأثیر اندازه دانه های خاک بر سرعت موج برشی ارائه نگردیده است. در این تحقیق به روش آزمایشگاهی و با استفاده از دستگاه المان خمشی، تأثیر اندازه دانه های خاک بر سرعت موج برشی در دامنه وسیعی از اندازه دانه های خاک ماسه ای خشک، تحت فشارهای همه جانبه از 50 تا 500 کیلو پاسکال در دستگاه سه‌محوری بررسی شد. به کمک الک‌های استاندارد ASTM خاک ماسه ای در 10 گروه تفکیک شد. از هر گروه، نمونه های سه‌محوری به روش تراکم کاهش یافته و با رعایت نسبت تخلخل یکسان تهیه و مورد آزمایش قرار گرفت. نتایج بررسی ها نشان می-دهد که سرعت موج برشی به‌اندازه‌ی دانه ها وابسته است، به‌طوری‌که در قطر متوسط دانه ها از 225/0 تا 29/1 میلی‌متر با افزایش قطر، سرعت موج برشی افزایش و برای قطر متوسط دانه ها از 29/1 تا 14/7 میلی‌متر با افزایش قطر سرعت موج برشی کاهش می یابد.

کلیدواژه‌ها


  1. Kramer, S.L. (1996) Geotechnical Earthquake Engineering Prentice Hall. Upper Saddle River, New York.
  2. Kayen, R., Moss, R., Thompson, E., Seed, R., Cetin, K., Kiureghian, A.D., Tanaka, Y., and Tokimatsu, K. (2013) Shear-wave velocity–based probabilistic and deterministic assessment of seismic soil liquefaction potential. Journal of Geotechnical and Geoenvironmental Engineering, 139(3), 407-419.
  3. Bartake, P. and Singh, D. (2007) Studies on the determination of shear wave velocity in sands. Geomechanics and Geoengineering, 2(1), 41-49.
  4. Tsiambaos, G. and Sabatakakis, N. (2011) Empirical estimation of shear wave velocity from in situ tests on soil formations in Greece. Bulletin of Engineering Geology and the Environment, 70(2), 291-297.
  5. Hardin, B.O. and Richart, Jr., F. (1963) Elastic wave velocities in granular soils. Journal of Soil Mechanics & Foundations Div, 89 (Proc. Paper 3407), 39-56.
  6. Walton, K. (1987) The effective elastic moduli of a random packing of spheres. Journal of the Mechanics and Physics of Solids, 35(2), 213-226.
  7. Zhong, X.-X. and Jian-xin, Y. (1992) Microfabrics and constitutive relations of granular materials. Chinese Journal of Geotechnical Engineering, 14(sup.), 39-48.
  8. Chang, C.S., Chao, S.J., and Chang, Y. (1995) Estimates of elastic moduli for granular material with anisotropic random packing structure. International Journal of Solids and Structures, 32(14), 1989-2008.
  9. Lin, S.-Y. Lin, P.S. Luo, H.-S. and Juang, C.H. (2000) Shear modulus and damping ratio characteristics of gravelly deposits. Canadian Geotechnical Journal, 37(3), 638-651.
  10. Menq, F.-Y. and Stokoe, K. (2003) 'Linear dynamic properties of sandy and gravelly soils from large-scale resonant tests'. In: Deformation Characteristics of Geomaterials, Di Benedetto et al., editors, 63-71.
  11. Hardin, B.O. and Kalinski, M.E. (2005) Estimating the shear modulus of gravelly soils. Journal of Geotechnical and Geoenvironmental Engineering, 131(7), 867-875.
  12. Sharifipour, M. and Dano, C. (2006) Effect of grains roughness on waves velocities in granular packings. First Euro Mediterranean in Advances on Geomaterials and Structures, Tunisia.
  13. Sahaphol, T. and Miura, S. (2005) Shear moduli of volcanic soils. Soil Dynamics and Earthquake Engineering, 25(2), 157-165.
  14. Patel, A. Bartake, P. and Singh, D. (2008) An empirical relationship for determining shear wave velocity in granular materials accounting for grain morphology. Geotech. Test. J., 32(1), 1-10.
  15. Gu, X. Yang, J. and Huang, M. (2013) Laboratory measurements of small strain properties of dry sands by bender element. Soils and Foundations, 53(5), 735-745.
  16. Choo, H. and Burns, S. (2014) Effect of overconsolidation ratio on dynamic properties of binary mixtures of silica particles. Soil Dynamics and Earthquake Engineering, 60, 44-50.
  17. Iwasaki, T. and Tatsuoka, F. (1977) Effects of grain size and grading on dynamic shear moduli of sands. Soils and Foundations, 17(3), 19-35.
  18. Wichtmann, T. and Triantafyllidis, T. (2009) Influence of the grain-size distribution curve of quartz sand on the small strain shear modulus Gmax. Journal of Geotechnical and Geoenvironmental Engineering, 135(10), 1404-1418.
  19. Senetakis, K. and Madhusudhan, B. (2015) Dynamics of potential fill–backfill material at very small strains. Soils and Foundations, 55(5), 1196-1210.
  20. Yang, J. and Gu, X. (2013) Shear stiffness of granular material at small strains: Does it depend on grain size? Geotechnique, 63(2), 165.
  21. Pradhan, A. and Yu, X. (2015) Bender Element Testing and Discrete Element Modeling of Shear Wave in Granular Media. IFCEE 2015, GSP 256, 1993-2002 the University of Texas, San Antonio, Texas.
  22. Payan, M., Khoshghalb, A., Senetakis, K., and Khalili, N. (2016) Effect of particle shape and validity of Gmax models for sand: A critical review and a new expression. Computers and Geotechnics, 72, 28-41.
  23. Huang, B., Xia, T., Qiu, H., Zhou, X., and Chen, W. (2017) Shear wave velocity in sand considering the effects of frequency based on particle contact theory. Wave Motion, 72, 173-186.
  24. Rajabi, H. and Sharifipour, M. (2017) An Experimental Characterization of Shear Wave Velocity (Vs) in Clean and Hydrocarbon-Contaminated Sand. Geotechnical and Geological Engineering, 35(6), 2727-2745.
  25. Dyvik, R. and Madshus, C. (1985) 'Lab Measurements of Gmax Using Bender Elements'. In: Advances in the Art of Testing Soils Under Cyclic Conditions, ASCE, 186-196.
  26. Jovičić, V., Coop, M., and Simić, M. (1996) Objective criteria for determining G max from bender element tests. Geotechnique, 46(2), 357-362.
  27. Lee, J.-S. and Santamarina, J.C. (2005) Bender elements: performance and signal interpretation. Journal of Geotechnical and Geoenvironmental Engineering, 131(9), 1063-1070.
  28. Viggiani, G., and Atkinson, J. (1995) Interpretation of bender element tests. Geotechnique, 8(32), 373A.
  29. Yamashita, S., Kawaguchi, T., Nakata, Y., Mikami, T., Fujiwara, T., and Shibuya, S. (2009) Interpretation of international parallel test on the measurement of Gmax using bender elements. Soils and Foundations, 49(4), 631-650.
  30. Cai, Y., Dong, Q., Wang, J., Gu, C., and Xu, C. (2015) Measurement of small strain shear modulus of clean and natural sands in saturated condition using bender element test. Soil Dynamics and Earthquake Engineering, 76, 100-110.
  31. Kumar, J. and Madhusudhan, B. (2010) A note on the measurement of travel times using bender and extender elements. Soil Dynamics and Earthquake Engineering, 30(7), 630-634.
  32. Murillo, C., Sharifipour, M., Caicedo, B., Thorel, L., and Dano, C. (2011) Elastic parameters of intermediate soils based on bender-extender elements pulse tests. Soils and Foundations, 51(4), 637-649.
  33. Arroyo, M., Muir Wood, D., Greening, P.D., Medina, L., and Rio, J. (2006) Effects of sample size on bender-based axial G0 measurements. Geotechnique, 56(1), 39-52.
  34. Brignoli, E.G., Gotti, M., and Stokoe, K.H. (1996) Measurement of shear waves in laboratory specimens by means of piezoelectric transducers. Geotechnical Testing Journal, 19(4), 384-397.
  35. Arulnathan, R., Boulanger, R., and Riemer, M. (1998) Analysis of bender element tests. Geotech Test J., 21, 120-131.
  36. Leong, E.C., Cahyadi, J., and Rahardjo, H. (2009) Measuring shear and compression wave velocities of soil using bender–extender elements. Canadian Geotechnical Journal, 46(7), 792-812.
  37. Lo Presti, D., Jamiolkowski, M., Pallara, O., Cavallaro, A., and Pedroni, S. (1998) Shear modulus and damping of soils. Geotechnique, 47, 603-617.
  38. Sanchez-Salinero, I. (1987) Analytical Investigation of Seismic Methods Used for Engineering Applications. University of Texas at Austin.
  39. Mancuso, C., Simonelli, A., and Vinale, F. (1989) Numerical analysis of in situ S-wave measurements. Proc., 12th Int. Conf. on Soil Mechanics and Foundation Engineering, Rio de Janeiro, 277-280.
  40. Kawaguchi, T., Mitachi, T., and Shibuya, S. (2001) Evaluation of shear wave travel time in laboratory bender element test. Proceedings of the International Conference on Soil Mechanics and Geotechnical Engineering, 1, Balkema Publishers, Istanbul.