بهبود پاسخ لرزه ای دیوارهای حائل تسلیم نشده با استفاده از لایه های کاهنده فشار پلیمری

نوع مقاله : Articles

نویسندگان

1 گروه مهندسی عمران، دانشگاه آزاد اسلامی، واحد علوم و تحقیقات تهران، تهران، ایران

2 دانشکده مهندسی عمران، دانشگاه تهران، تهران، ایران

3 پژوهشکده مهندسی ژئوتکنیک، پژوهشگاه بین‌المللی زلزله‌شناسی و مهندسی زلزله، تهران، ایران

چکیده

در این مقاله عملکرد لایه های کاهنده فشار پلیمری در بهبود پاسخ دینامیکی دیوارهای حائل بررسی گردیده است. برای این منظور با انجام یک‌سری آزمایش میز لرزه  g1، رفتار دیوار حائل تسلیم نشده در دو حالت با و بدون لایه کاهنده فشار مدل‌سازی شده است. جهت ساخت لایه کاهنده فشار از فوم پلی‌یورتان (PU) استفاده شده که ضمن دارا بودن خصوصیات مکانیکی مناسب، برخی از محدودیت های مصالحی که در تحقیقات گذشته به‌کار برده شده را مرتفع می سازد. نتایج نشان می دهد که اجرای لایه کاهنده فشار از جنس فوم PU، نیروی افقی کل و دینامیکی وارد بر دیوار را به‌ترتیب به‌طور متوسط 30 و 45 درصد کاهش داده است. به‌ازای سختی بی‌بعد یکسان، این نوع فوم در مقایسه با مصالح مشابه نظیر فوم پلی‌استایرن انبساطی (EPS) عملکرد بهتری را حاصل نموده است. همچنین ملاحظه گردیده که این‌ روش در تحریک های متوسط و شدید (دامنه شتاب ورودی بزرگ‌تر از  g24/0) بازدهی بیشتری دارد.

کلیدواژه‌ها


  1. Horvath, J.S. (1995) Geofoam geosynthetic. Horvath Engineering. P.C., Scarsdale, New York, U.S.A.
  2. Inglis, D., Macleod, G., Naesgaard, E. and Zergoun, M. (1996) Basement wall with seismic earth pressures and novel expanded polystyrene foam buffer layer. Proceedings of the 10th Annual Symposium of the Vancouver Geotechnical Society. Canada.
  3. Hazarika, H., Okuzono, S. and Matsou, Y. (2003) Seismic stability Enhancement of rigid nonyielding structures. Proceedings of the 13th International Offshore and Polar Engineering Conference. Honolulu, USA.
  4. Bathurst, R.J., Zarnani, S. and Gaskin, A. (2007) Shaking table testing of geofoam seismic buffers. Soil Dynamics and Earthquake Engineering, 25, 324-332.
  5. Hazarika, H., Kohama, E. and Sugano, T. (2008) Underwater shake table tests on waterfront structures protected with tire chips cushion. Journal of Geotechnical and Geoenvironmental Engineering, 134(12), 1706-1719.
  6. Hazarika, H., Yasuhara, K., Kikuchi, Y., Karmokar, A.K. and Mitarai, Y. (2010) Multifaceted potentials of tire-derived three dimensional geosynthetics in geotechnical applications and their evaluation. Geotextiles and Geomembranes, 28(3), 303-315.
  7. Athanasopoulos-Zekkos, A., Lamote, K. and Athanasopoulos, G.A. (2011) Seismic isolation of earth retaining walls using EPS compressible inclusions - Results from centrifuge testing. Proceedings of the 4th International Conference on Geofoam Blocks in Construction Applications. Lillestrom, Norway.
  8. Ertugrul, O.L. and Trandafir, A.C. (2014) Seismic earth pressures on flexible cantilever retaining walls with deformable inclusions. Journal of Rock Mechanics and Geotechnical Engineering, 6(5), 417–427.
  9. Athanasopoulos, G.A., Pelekis, P.C. and Xenaki, V.C. (1999) Dynamic properties of EPS geofoam: an experimental investigation. Geosynthetics International, 6(3), 171–194.
  10. Zheng-Yi, F. and Sutter, K.G. (2000) Dynamic properties of granulated rubber/sand mixtures. Geotechnical Testing Journal, 23(3), 338-344.
  11. Lee, H.J. and Roh, H.S. (2007) The use of recycled tire chips to minimize dynamic earth pressure during compaction of backfill. Construction and Building Materials, 21(5), 1016-1026.
  12. Trandafir, A.C., Bartlett, S.F. and Lingwall, B.N. (2010) Behavior of EPS geofoam in stress-controlled cyclic uniaxial tests. Geotextiles and Geomembranes, 28, 514–524.
  13. Nakhaee, A. and Marandi, M. (2011) Reducing the forces caused by earthquake on retaining walls using granulated rubber-soil mixture. IJE Transactions B: applications, 24(4), 337-350.
  14. Ossa, A. and Romo, M.P. (2011) Dynamic characterization of EPS geofoam. Geotextiles and Geomembranes, 29, 40–50.
  15. Golpazir, I., Ghalandarzadeh, A., Jafai, M.K. and Mahdavi, M. (2016) Dynamic properties of polyurethane foam-sand mixtures using cyclic triaxial tests. Construction and Building Materials, 118, 104-115.
  16. Sadrekarimi, A., Ghalandarzadeh, A. and Sadrekarimi, J. (2008) Static and dynamic behavior of hunchbacked gravity quay walls. Soil Dynamics and Earthquake Engineering, 28(2), 99-117.
  17. ASTM D 2487-10. (2000) Standard practice for classification of soils for engineering purposes (Unified soil classification system). American Society of Testing and Materials, West Conshohocken, Pennsylvania, USA.
  18. Haghighat, S. (2001) Investigation of Total Stress and Lateral Strains Ratio Effects on Undrained Behavior of Saturated Sandy Soils by Stress Path Triaxial Tests. M.Sc. Thesis, Department of Civil Engineering, University of Tehran (in Persian).
  19. Iai, S. (1989) Similitude for shaking table tests on soil-structure-fluid model in 1-g gravitational field. Soils and Foundations, 29, 105-118.
  20. Athanasopoulos-Zekkos, A., Lamote, K. and Athanasopoulos, G.A. (2012) Use of EPS geofoam compressible inclusions for reducing the earthquake effects on yielding earth retaining structures. Soil Dynamics and Earthquake Engineering, 41, 59-71.
  21. Sarsby, R.W., Kalteziotis, N. and Haddad, E.H. (1980) Bedding error in triaxial tests on granular media. Geotechnique, 30(1), 302–309.
  22. Horvath, J.S. (2000) Integral-Abutment Bridges: Problems and Innovative Solutions Using EPS Geofoam and Other Geosynthetics. Research report No. CE/GE-00-2, Manhattan College, Bronx, New York, USA.
  23. Zarnani, S., Bathurst, R.J. (2007) Experimental investigation of EPS geofoam seismic buffers using shaking table tests. Geosynthetics International, 14(3), 165–177.
  24. Dave, T.N., Dasaka, S.M., Khan, N. and Murali Krishna, A. (2013) Evaluation of seismic earth pressure reduction using EPS geofoam. Proceedings of the 18th International Conference on Soil Mechanics and geotechnical Engineering, Paris, France.
  25. Horvath, J.S. (2010) Lateral Pressure Reduction on Earth-Retaining Structures Using Geofoams: Correcting Some Misunderstandings. Proceedings of the ER2010: Earth retention conference 3, Washington, USA.
  26. Hazarika, H. (2006) Stress-strain modeling of EPS geofoam for large-strain applications. Geotextiles and geomembranes, 24(2), 79-90.