بررسی آماری وابستگی منطقه ای جنبش‌های قوی زمین در ایران و کالیفرنیا با استفاده از تحلیل واریانس

نوع مقاله : Articles

نویسندگان

1 دانشگاه خواجه ‌نصیرالدین طوسی، تهران، ایران

2 دانشکده مهندسی عمران، دانشگاه خواجه‌نصیرالدین طوسی، تهران، ایران

چکیده

در این مقاله بررسی آماری دقیقی از میزان وابستگی منطقه ای جنبش‌های قوی زمین در سه منطقه تکتونیکی 1) البرز- آذربایجان-کوپه داغ، 2) ایران مرکزی و 3) زاگرس با استفاده از روش تحلیل واریانس (ANOVA) مورد مطالعه قرار گرفت. در این تحلیل‌ها از مؤلفه‌های افقی شتاب طیفی در طیف وسیعی از پریود (01/0 تا 5 ثانیه) استفاده شد. بانک داده جنبش قوی زمین ایران متشکل از 1943 زوج رکورد شتاب حاصل از 426 زمین‌لرزه با بزرگای گشتاوری 5/4 تا 7/7 می باشد که توسط 680 ایستگاه شتاب‌نگاری ثبت شدند. در این مطالعه به منظور ترکیب مقادیر شتاب طیفی افقی از پارامتر GMRotI50 [1] که مستقل از جهت قرارگیری سنسورهای ثبت شتاب‌نگاشت نسبت به یکدیگر است استفاده شد. برای اولین بار مشخصاتی نظیر فاصله گسیختگی (نزدیک‌ترین فاصله به صفحه گسیختگی) و مکانیسم گسلش برای تمامی زلزله ها برآورد شد. برای 63 ایستگاه مقدار سرعت موج برشی در 30 متر فوقانی (V_S30) با استفاده از فرکانس اصلی ساختگاه و رویکرد مبتنی بر روش نسبت طیفی افقی به عمودی [2] تعیین شد. نتایج حاصل از این تکنیک حاکی از امکان ترکیب داده‌های ثبت شده در سه منطقه تکتونیکی و تشکیل پایگاه جنبش قوی زمین واحد برای کل ایران می باشد. تعداد 5902 رکورد از 217 زلزله در کالیفرنیا از بانک NGA-West2 استخراج و امکان ترکیب آنها با رکوردهای ایران از طریق تحلیل واریانس ارزیابی شد. در مورد تشابه جنبش‌های قوی ایران و کالیفرنیا نمی توان اظهارنظر قطعی داشت و داده‌های بیشتری از ایران مورد نیاز می باشد.

کلیدواژه‌ها


  1. Boore, D.M., Watson-Lamprey, J. and Abrahamson, N.A. (2006) Orientation-independent measures of ground motion. Bull. Seismol. Soc. Am., 96, 1502-1511.
  2. Darzi, A., Pilz, M., Zolfaghari, M.R., Fah, D. (2019) An automatic procedure to determine the fundamental site resonance: application to the Iranian strong motion network. Pure Appl. Geophys. https://doi.org/10.1007/s00024-019-02153-z.
  3. Douglas, J. (2004) An investigation of analysis of variance as a tool for exploring regional differences in strong ground motions. Journalof Seismology, 8(4), 485-496.
  4. Shoja-Taheri, J., Naserieh, S. and Hadi, G. (2010) A test of the applicability of NGA models to the strong ground-motion data in the Iranian plateau. J. Earthq. Eng., 14(2), 278-292.
  5. The NGA-West 2 ground motion database. [Online]. Available:
  6. http:// peer.berkeley.edu/ngawest2/.[2014, April].
  7. Zare, M., Bard, P.Y. and Ghafory-Ashtiany, M. (1999) Site characterizations for the Iranian strong motion network. Soil Dyn. Earthq. Eng., 18, 101-123.
  8. Ghodrati Amiri, G., Khorasani, M., Mirza Hessabi, M. and Razavian Amrei, S.A. (2010) Ground-motion prediction equations of spectral ordinates and Arias intensity for Iran. J. Earthq. Eng., 14(1), 1-29.
  9. Saffari, H., Kuwata, Y., Takada, S. and Mahdavian, A. (2012) Updated PGA, PGV, and spectral acceleration attenuation relations for Iran. Earthquake Spectra, 28(1), 257-276.
  10. Zafarani, H., Hassani, B. and Ansari, A. (2012) Estimation of earthquake parameters in the Alborz seismic zone, Iran using generalized inversion method. Soil Dyn. Earthq. Eng., 42, 197-218.
  11. Zafarani, H. and Hassani, B. (2013) Site response and source spectra of S-waves in the Zagros region, Iran. Journal of Seismology, 17, 645-666.
  12. Chandra, V.J., McWhorten, G. and Nowroozi, A. (1979) Attenuation of intensities in Iran. Bull. Seismol. Soc. Am., 69, 237-250.
  13. Zafarani, H., Mousavi, M., Noorzad, A. and Ansari, A. (2008) Calibration of the specific barrier model to Iranian plateau earthquakes and development of physically based attenuation relationships for Iran. Soil Dyn. Earthq. Eng., 28, 550-576.
  14. Zafarani, H., Luzi, L., Lanzano, G. and Soghrat, M.R. (2017) Empirical equations for the prediction of PGA and pseudo spectral accelerations using Iranian strong-motion data. Journal of Seismology.
  15. Ghasemi, H., Zare, M., Fukushima, Y. and Koketsu, K. (2009) An empirical spectral ground-motion model for Iran. Journal of Seismology, 13(4), 499-515.
  16. Atkinson, G. and Morrison, M. (2009) Regional variability in ground motion amplitudes along the west coast of North America. Bull. Seismol. Soc. Am., 99, 2393-2409.
  17. Ambraseys, N.N., Douglas, J., Sarma, S.K. and Smit P.M. (2005) Equations for the estimation of strong ground motions from shallow crustal earthquakes using data from Europe and the Middle East: horizontal peak ground acceleration and spectral acceleration. Bull. Earthq. Eng., 3(1), 1-53.
  18. Sedaghati, F. and Pezeshk, S. (2016) Investigation of regional differences in strong ground motions for the Iranian plateau. World Acad. Sci. Eng. Tech., Int. J. Environ. Chem. Ecol. Geol. Geophys. Eng., 10(6), 591-594.
  19. Hamzeloo, H. and Mahood, M. (2012) Ground-motion attenuation relationship for east central Iran. Bull Seismol. Soc. Am., 102(6), 2677-2684.
  20. Hessami, K. and Jamali, F. (2006) Explanatory Notes to the Map of Major Active Faults of Iran. Journal of Seismology and Earthquake Engineering.
  21. Hessami, K. and Khorrami, F. (2011) Determination of Slip Rate Along Active Faults of Central Alborz Using GPS Measurements. International Institute of Earthquake Engineering and Seismology (IIEES) report (in Persian).
  22. Vernant, P.H., Nilforoushan, F., Hatzfeld, D., Abbasi, M.R., Vigny, C., Masson, F., Nankali, H., Martinod, J., Ashtiani, A., Bayer, R., Tavakoli, F. and Chery, J. (2004) Present-day crustal deformation and plate kinematics in the Middle East constrained by GPS measurements in Iran and northern Oman. Geophys. J. Int., 157(1), 381-398.
  23. Masson, F., Djamour, Y., Van Gorp, S., Chery, J., Tatar, M., Tavakoli, F., Nankali, H. and Vernant, P. (2006) Extension in NW Iran driven by the motion of the South Caspian Basin. Earth Planet. Sci. Lett., 252(1), 180-188.
  24. Berberian, M. (1995) Master "blind'' thrust faults hidden under the Zagros folds: active basement tectonics and surface morphotectonics. Tectonophysics. 241(3-4), 193-195, 197, 199-224.
  25. Authemayou, C., Bellier, O., Chardon, D. and Benedetti, L. Malekzade, Z., Claude, C., Angeletti, B., Shabanian, E. and Abbassi, M.R. (2009) Quaternary slip-rates of the Kazerun and the Main Recent Faults: active strike-slip partitioning in the Zagros fold-and-thrust belt. Geophys. J. Int., 178, 524-540.
  26. Fattahi, M., Walker, R.T., Talebian, M., Sloan, R.A. and Rasheedi, A. (2011) The structure and late Quaternary slip rate of the Rafsanjan strike-slip fault, SE Iran. Geosphere, 7(5), 1159-1174.
  27. Hollingsworth, J., Fattahi, M., Walker, R., Talebian, M., Bahroudi, A., Bolourchi, M.J., Jackson, J. and Copley, A. (2010) Oroclinal bending, distributed thrust and strike-slip faulting, and the accommodation of Arabia-Eurasia convergence in NE Iran since the Oligocene. Geophys. J. Int., 181(3), 1214-1246.
  28. Building and Housing Research Center (BHRC). [Online]. Available:
  29. http://site.bhrc.ac.ir/portal/english/Home.aspx [2015, August].
  30. Boore, D.M., Stephens, C.D. and Joyner, W.B. (2002) Comments on baseline correction of digital strong-motion data: examples from the 1999 Hector Mine, California earthquake. Bull. Seismol. Soc. Am., 92, 1543-1560.
  31. Ansari, A., Noorzad, A. and Zare, M. (‎2007) Application of wavelet multi-resolution analysis for correction of seismic acceleration records. J. Geophys. Eng., 4, 1-16.
  32. Ansari, A., Noorzad, A., Zafarani, H. and Vahidifard, H. (2010) Correction of highly noisy strong motion records using a modified wavelet de-noising method. Soil Dyn Earthqu Eng., 30, 1168-1181.
  33. Boore, D.M. and Bommer, J.J. (2005) Processing of strong-motion accelerograms: needs, options and consequences. Soil Dyn. Earthq. Eng., 25, 93-115.
  34. Douglas J. (2003) What is a poor quality strong-motion record? Bull. Earthquake Eng., 1,141-56.
  35. Zolfaghari, M.R. and Darzi, A. (2014) Design and Development of A GIS-Based Seismo-tectonic Source Model for Iran. Second European Conference on Earthquake Engineering and Seismology (2ECEE), Istanbul, Turkey.
  36. Mirzaei, N., Gao, M. and Chen, Y.T. (1998) Seismic source regionalization for seismic zoning of Iran: major seismotectonic Provinces. J. Earthq. Predict Res., 7, 465-495.
  37. Harvard Seismology, Centroid Moment Tensor (CMT) catalog search. [Online]. Available: www.seismology.harvard.edu [2014, April].
  38. NEIC global catalog, National Earthquake Information Center. [Online]. Available: http://gldss7.cr.usgs.gov/neis/FM/fast_moment.html [2014, April].
  39. ISC, International seismological Centre. [Online]. Available: http://www.isc.ac.uk [2014, April].
  40. Shahvar, M.P., Zare, M. and Castellaro, S. (2013) A unified seismic catalog for the Iranian plateau (1900-2011). Seismol. Res. Lett., 84(2), 233-249.
  41. Joyner, W.B. and Boore, D.M. (1981) Peak horizontal acceleration and velocity from strong-motion records including records from the 1979 Imperial Valley, California, earthquake. Bull. Seismol. Soc. Am., 71, 2011-2038.
  42. Kaklamanos, J., Baise, L.G. and Boore, D.M. (2011) Estimating unknown input parameters when implementing the NGA ground-motion prediction equations in engineering practice. Earthquake Spectra, 27, 1219-1235.
  43. Scherbaum, F., Schmedes, J. and Cotton, F. (2004) On the conversion of source-to-site distance measures for extended earthquake source models. Bull. Seismol. Soc. Am., 94, 1053-1069.
  44. Nakamura, Y. (1989) A Method for Dynamic Characteristics Estimation of Subsurface using Microtremor on the ground surface. Q. Rep. Railway Tech. Res. Inst., 30, 25-33.
  45. Bard, P.Y. and SESAME manual (2004) Guidelines for the implementation of the H/V spectral ratio technique on ambient vibration. European Commission Research General Directorate Project.
  46. National Earthquake Hazard Reduction Program (NEHRP). (2009) Building Seismic Safety Council [BSSC].
  47. Chatelain, J.L., Guillier, B., Cara, F., Duval, A.M., Atakan K., Bard, P.Y. and Azzara R. (2008) Evaluation of the influence of experimental conditions on H/V results from ambient noise recordings. Bull. Earthq. Eng. 6(1), 33-74.
  48. Bommer, J.J., Douglas, J. and Strasser, F.O. (2003) Style-of-faulting in ground-motion prediction equations. Bull. Earthq. Eng., 1(2), 171-203.
  49. Seyhan, E. and Stewart, J.P. (2014) Semi-empirical nonlinear site amplification from NGA-West 2 data and simulations. Earthq. Spectra, 30(3), 1241-1256.
  50. Boore, D.M., Stewart, J.P., Seyhan, E. and Atkinson, G.M. (2014) NGA-West 2 equations for predicting PGA, PGV, and 5%-Damped PSA for shallow crustal earthquakes. Earthquake Spectra, 30(3), 1057-1085.
  51. Darzi, A., Zolfaghari, M.R., Cauzzi, C., and Fah, D. (2018) An empirical ground motion model for horizontal PGV, PGA and 5%-damped elastic response spectra (0.01-10 s) in Iran. Bull. Seismol. Soc. Am., https://doi.org/10.1785/0120180196.
  52. Zolfaghari, M.R. and Darzi, A. (2019) Ground-motion models for predicting vertical components of PGA, PGV and 5%-damped spectral acceleration (0.01–10 s) in Iran. Bull. Earthq. Eng.