توسعه روابط ریسک لرزه‌ای برای سیستم‌های پیچیده و تعمیم آن به مسائل مواجه با تهدیدهای هوشمند

نوع مقاله : Articles

نویسندگان

1 پژوهشکده مهندسی ژئوتکنیک، پژوهشگاه بین‌المللی زلزله‌شناسی و مهندسی زلزله، تهران، ایران

2 پژوهشکده مدیریت بحران، دانشگاه مالک اشتر، تهران، ایران

چکیده

در محاسبات متداول ریسک لرزه‌ای عموماً ارتباط میان پارامترهای اثرگذار به‌صورت زنجیره‌ای دیده می‌شود. این نگاه امکان برقراری مستقیم ارتباط میان حلقه‌های غیرمجاور زنجیره پارامترها را سلب می‌نماید. تحت قید مذکور دامنه استفاده از روابط متداول محاسبه ریسک در مجموعه‌های پیچیده محدود می‌شود. در این تحقیق با بازنویسی روابط محاسبه ریسک لرزه‌ای و ایجاد امکان ارتباط میان حلقه‌های غیرمجاور از پارامترها، امکان افزایش کارایی روابط محاسبه ریسک لرزه‌ای فراهم آمده است. در ادامه با افزودن پارامترهای هوشمندی به معادلات محاسبه ریسک لرزه‌ای، امکان استفاده از روابط مذکور در برآورد ریسک تهاجم‌های هوشمند ایجاد شده است. این افزایش قابلیت با ارائه مثال‌های متعدد برای حالات مختلف مواجهه با تهدیدهای هوشمند مورد بررسی قرار گرفته است. در نهایت نحوه تعمیم کاربرد چارچوب پیشنهادی برای حالاتی که پارامترهای هوشمندی در طول تهاجم به‌صورت دینامیکی تغییر می‌نماید تشریح شده است.

کلیدواژه‌ها


عنوان مقاله [English]

Extension of Common Seismic Risk Evaluation Equations to be Applicable for Complex and Wise Systems

نویسندگان [English]

  • Hossein Jahankhah 1
  • Ali Alidoosti 2
1 Geotechnical Engineering Research Center, International Institute of Earthquake Engineering and Seismology, Tehran, Iran
2 Malek Ashtar University of Technology, Tehran, Iran
چکیده [English]

In this article, a uniform framework is presented that has the capability to be used in multi hazard risk evaluation, specifically seismic hazards and hazards related to wise threats. In this stream, first, common equations for seismic risk evaluation are completed in a more general pattern. The main novelty of this phase was providing the direct connection between every two parameters without any intervening third parameter. To show the performance of such re-derived equations, they are implemented on a sample case selected from petrochemical industry, where a vessel mounted on skirt is falling on a pipe rack. It is illustrated that traditional equations cannot predict complex risks like overturning of one equipment on another one. In spite of that, new proposed equations can simply include such irregular happenings and hence would provide more accurate risk estimates. In the next step, the state and wiseness parameters are added to the revised equations, introduced above, which adds the capability of applying these equations against wise threats. The wiseness parameters implemented in these equations are the knowledge of the owner about the asset, the knowledge of the owner about threats, the capability of owner to process the available knowledge and take preventive actions, the knowledge of wise threat about target asset, the knowledge of wise threat about attacking capabilities and at the wise threat ability to process the available knowledge and take offensive actions. In this part, again, the high flexibility and performance of new proposed equations is shown for different states of owner-attacker knowledge through several examples. These examples cover blind attack, wise attack, wise attacker against owner with restricted knowledge, wise attacker against owner with restricted processing and acting capabilities and, at last, attacker with restricted knowledge against wise owner. In the final step, the applicability of proposed equations for cases with dynamic variable states and dynamic owner-attacker knowledge levels are illustrated in an example. It is expressed that how dynamic parameters can be included, through revising probability distribution functions, in the proposed framework. It should be confirmed that the presented equations can be reduced to the traditional form which is common in current seismic risk evaluation practice. Also it should be mentioned that the above equations just form the basic framework in risk evaluation and in order to implement them in real cases, each term would need to be expanded to several new parts. Besides, the required probability distribution equations should be provided for every specific problem distinctly.

کلیدواژه‌ها [English]

  • Seismic Risk
  • Complex systems
  • Owner and Attacker Knowledge
  1. Algermissen, S.T., Rinehart, W.A., Dewey, J., Steinbrugge, K.V., Degenkolb, H.J., Cluff, L.S., McClure, F.E., Gordon, R.F. (1972) A Study of Earthquake Losses in the San Francisco Bay Area: Data and Analysis. U.S. Department of Commerce, Environmental Research Laboratories.
  2. Whitman, R.V., Reed, J.W., and Hong, S.T. (1973) Earthquake damage probability matrices. Proc. Fifth WCEE., Rome, Italy.
  3. Scholl, R.E., Kustu, O., Perry, C.L., and Zanetti, J.M. (1982) Seismic Damage Assessment for High-rise Building. John A. Blume & Associates, Inc.
  4. ATC (1985) Earthquake Damage Evaluation Data for California, ATC-13 Report. Redwood City, CA: Applied Technology Council.
  5. FEMA (1997) NEHRP Guidelines for Seismic Rehabilitation of Buildings, Report FEMA-273. Washington, DC.
  6. Chen, R., Jaiswal, K.S., Bausch, D., Seligson, H., and Wills, C.J. (2016) Annualized Earthquake Loss Estimates for California and Their Sensitivity to Site Amplification. Seis. Res. Let., 87(6), 1363-1372.
  7. de Ruiter, M.C., Ward, P.J., Daniell, J.E., Aerts, J.C.J.H. (2017) Review article: a comparison of flood and earthquake vulnerability assessment indicators. Nat. Hazards Earth Syst. Sci., 17, 1231-1251.
  8. Gunturi S. and Shah, H. (1993) Building-Specific Earthquake Damage Estimation. Ph.D. Thesis. John A. Blume, Stanford University.
  9. Singhal, A. and Kiremidjian, A.S. (1996) A Method for Earthquake Motion-damage Relationships with Application to Reinforced Concrete Frames, Report No. 119. Stanford, John A. Blume, Stanford University.
  10. Porter, K.A. and Kiremidjian, A.S. (2001) Assembly-Based Vulnerability of Buildings and its Uses in Seismic Performance Evaluation and Risk Management Decision-Making, Technical Report No. 309. John A. Blume, Stanford University.
  11. Cornell, C.A. and Krawinkler, H. (2000) Progress and challenges in seismic performance assessment. PEER Center News, 3(2).
  12. Vamvatsikos, D. and Cornell C.A. (2002) Incremental Dynamic Analysis. Earth. Eng. and Str. Dyn., 31, 491-514.
  13. Aslani, H. and Miranda, E. (2005) Probabilistic Earthquake Loss Estimation and Loss Disaggregation in Buildings, Report No. 157. John A. Blume, Stanford University.
  14. Baker, J.W., and Cornell, C.A. (2005) A Vector-Valued Ground Motion Intensity Measure Consisting of Spectral Acceleration and Epsilon. Earth. Eng. and Str. Dyn., 34(10), 1193-1217.
  15. Baker, J.W., and Cornell, C.A. (2008) Uncertainty propagation in probabilistic seismic loss estimation. Str. Safety, 30, 236-252.
  16. Saadat, S., Camp, C.V., Pezeshk, S. (2014) Seismic performance-based design optimization considering direct economic loss and direct social loss. Eng. Str., 76, 193-201.
  17. Lenin, A. (2015) Reliable and Efficient Determination of the Likelihood of Rational Attacks. Ph.D. Thesis, Tallinn University of Technology, Department of Informatics, Estonia.
  18. American Petroleum Institute (2005) Security Guidelines for the Petroleum Industry. Third Edition.
  19. Norman, T.L. (2010) Risk Analysis and Security Countermeasure Selection. CRC Press.
  20. Baker, J.W., and Cornell, C.A. (2003) Uncertainty Specification and Propagation for Loss Estimation Using FOSM Methods. Pacific Earthquake Engineering Research Center, PEER Report.
  21. Young, C.S. (2010) Metrics and Methods for Security Risk Management. Elsevier.