ارائه‌ی روشی برای شناسایی ماتریس‌های مشخصه دینامیکی سازه‌‌های برشی با استفاده از داده‌های خروجی

نوع مقاله : Articles

نویسندگان

1 گروه مهندسی عمران، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران

2 پژوهشکده مهندسی سازه، پژوهشگاه بین المللی زلزله‌شناسی و مهندسی زلزله، تهران، ایران

چکیده

امروزه روش‌های شناسایی سیستم‌ها به سبب دامنه وسیع کاربرد در مباحث پایش سلامت و تشخیص خرابی سازه‌ها جایگاه ویژه‌ای در مهندسی عمران یافته است. از این میان، به علت محدودیت‌هایی که به لحاظ تحریک سازه‌های حقیقی بزرگ‌مقیاس وجود دارد، مهندسان سازه بیشتر به سمت روش‌های شناسایی بر اساس داده‌های خروجی سوق پیدا نموده‌اند. در این مقاله روشی بر اساس شناسایی زیرفضای تصادفی در حوزه زمان جهت شناسایی کلیه‌ی ماتریس‌های مشخصه دینامیکی سازه‌های برشی شامل جرم، سختی و میرایی در شرایط کار با داده‌های آلوده به نوفه‌ی بالا پیشنهاد شده است. روش حاضر بر یافتن تحقق کمینه ماتریس سیستم به فرم کلاسیک از میان بی‌نهایت ماتریس سیستم قابل شناسایی به روش شناسایی زیر فضای تصادفی بر اساس تئوری تحقق تکیه دارد و در کنار قابلیت‌ها، محدودیت‌هایی نیز دارد که عمده این محدودیت‌ها شامل وابسته بودن دقت به دقت روش‌های اولیه و نیز لزوم داشتن وضوح دامنه‌ی پاسخ و طول مدت کافی برای رکوردگیری می‌باشد. برای ارزیابی کارایی روش پیشنهادی از دو مدل عددی 3 و 5 طبقه بهره گرفته شده است. با توجه به خطای زیر سه درصد برای تمامی حالات، نتایج تحلیل‌های عددی حاکی از صحت و دقت روش شناسایی پیشنهادی حتی در هنگام استفاده از داده‌های آلوده به نوفه‌ی بالا است.

کلیدواژه‌ها


عنوان مقاله [English]

Introducing a Method for Identification of All Dynamic Characteristics Matrices of Shear Buildings Using Output-Only Data

نویسندگان [English]

  • Rasoul Khodayari 1
  • Omid Bahar 2
  • Mohsen Ghafory-Ashtiany 2
1 Department of Civil Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
2 Structural Engineering Research Center, International Institute of Earthquake Engineering and Seismology, Tehran, Iran
چکیده [English]

Nowadays, system identification methods have found special place in civil engineering due to extended application in health monitoring and damage detection of structures. Among these, due to limitations caused by stimulation of large scale actual structures, structure engineers are mostly leading toward identification methods based on output-only data. In this study, a method was proposed based on identification of Stochastic Subspace Identification (SSI) method in time domain to identify all structural matrices including mass, damping and stiffness in shear buildings. This method is highly able to identify structural matrices even in working with noise-polluted data. When using SSI with reviewing realization theory, we have never proper information about real degrees of freedom of the system. Hence, system matrices are identifiable in various forms, all of which are true realizations of the system. To explore the main matrices of structural model, the proposed method relies on finding realization of the minimal matrix of the system in the classical form. To evaluate the effectiveness of suggested method, two numerical models of 3 and 5 stories is used. Results of the numerical analysis indicate accuracy of suggested identification method, even in using high noise polluted data.

کلیدواژه‌ها [English]

  • System Recognition
  • Dynamic Feature Matrix
  • Output-Only
  • Random Subspace
  • Shear Structure
  1. Juang J-N (1994) Applied System Identification, NASA Langley Research Center. Prentice Hall PTR.
  2. Van Overschee, P. and De Moor, B. (1996) Subspace Identification for Linear Systems: Theory, Implementation, Applications.
  3. Bendat, J.S, Piersol, A.G. (1993) Engineering Application of Correlation and Spectral Analysis. 2nd edition, John Wiley & Sons, New York, NY, USA
  4. Benjamin. B. (2001) Output only modal Analysis using Frequency Domain Decomposition. Bachelor of Engineering Thesis, University of Queensland.
  5. Brinvker, R., Lingmi, Z., Anderson, P. (2000) Modal Identification from Ambient Response using Frequency Domain Decomposition. 18th International Modal Analysis Conference, San Antonio, Texas, Society for Experimental Mechanics.
  6. Peeters, B., De Roeck, G. (1999) Reference Based Stochastic Subspace Identification in Civil Engineering. 2nd International Conference on Identification in Engineering Systems, Swansea, UK, March.
  7. Yuan, P., Wu, Z., & Ma, X. (1998) Estimated mass and stiffness matrices of shear building from modal test data. Earthquake Engineering and Structural Dynamics, 27(5), 415-422.
  8. Takewaki, I. and Nakamura, M. (2000) Stiffness-damping simultaneous identification using limited earthquake records. Earthquake Engineering & Structural Dynamics, 29(8), 1219-1238.
  9. Ghafory-Ashtiany, M., Adhami, B., Khanlari, K. (2014) Identification of structural systems with full characteristic matrices under single point excitation. Journal of Sound and Vibration, 333(24), 6381-6394.
  10. Du, X.L. and Wang, F.Q. (2009) New modal identification method under the nonstationary Gaussian ambient excitation. Applied Mathematics and Mechanics, 30(10), 1295-1304
  11. Rainiery, C., Fabbrocino, G. (2010) Automaated output-only dynamic identification of civil engineering structure. Mechanical Systems and Signal Processing.
  12. Facchini, L., Betti, M., Biagini, P. (2014) Neural network based modal identification of structural systems through output-only measurement. Computers and Structures.
  13. Ni, P., Xia, Y., Hao, H., (2018) Improved decentralized structural identification with output-only measurement. Measurement, 597-610.
  14. Peeters, B. (2000) System Identification and Dmage Detection in Civil Engineering. Ph.D. Thesis, Katholieke Universiteit, Leuven, Belgium.
  15. Katayama, T. (2005) Subsapace Methods for System Identification. Springer.
  16. Brincker, R., Anderson, P. (2006) Understanding Stochastic Subspace Identification. Proceeding of International Modal Analysis Conference, IMAC.
  17. Lardies, J. (2017) Modal parameter identification by an iterative approach and by the state space model. Mechanical Systems and Signal Processing, 239-251.
  18. Nilvetti, F., Pappalardo, C.M. (2012) Mass stiffness and damping identification of a two story building model. International Journal of Mechanical Engineering and Industrial Design.
  19. Parloo, E., Verboven, P., Guillame, P. and Overmeire, M. (2000) Sensitivity-based operational mode shape normalization. Mech. Systems and Signal Proc., 16, 757-767.
  20. Parloo, E., Guillaume, P., Anthonis, J., Heylen, W. and Swers, N. (2003) Modelling of sprayer boom dynamics by means of maximum likelihood identification techniques, part 2: Sensivity-based mode shape normalization. Biosystem Engineering.
  21. Aenelle, M.L., Brincker, R., Fernandez-Canteli, A. (2005) Some methods to determine scaled mode shapes in natural input modal analysis. Proc. of the International Modal Analysis Conference (IMAC) XXIII.
  22. Malekjafarian, A., Ashory, M.R., Khatibi, M.M., Saber Latibari, M. (2016) Rigid body stiffness matrix for identification of inertia properties from output-only data. European Journal of Mechanics A/Solids, 85-94.
  23. Khatibi, M.M., Ashory, M.R., Malekjafarian, A. (2012) Mass stiffness change method for scaling of operational mode shapes. Mechanical Systems and Signal Processing.
  24. Brincker, R. and Anderson, P. (2003) A way of getting scaled mode shapes in output only modal analysis. Proc. of the International Modal Analysis Conference (IMAC) XXI.
  25. Bernal. D. (2004) Modal scaling from known mass perturbation. Journal of Engineering Mechanics, 130-1083.