حساسیت نتایج شبیه‌سازی حرکت زمین به پارامترهای ورودی در روش گسل محدود تصادفی؛ مطالعه موردی: گسل نیاوران تهران

نوع مقاله : Articles

نویسندگان

1 دانشگاه شهید مدنی آذربایجان، تبریز، ایران

2 دانشگاه کانازاوا، کانازاوا، ژاپن

چکیده

نتایج حرکت‌های زمین به‌دست‌آمده از روش‌های شبیه‌سازی به‌شدت بستگی به میزان دقت پارامترهای ورودی دارد، به‌طوری‌که می‌توانند مقادیر بیشینه، محتوای فرکانسی و مدت تداوم حرکت را تحت تأثیر قرار دهند. در این مطالعه به‌منظور ارزیابی میزان اثرات عدم قطعیت در پارامترهای چشمه، مسیر و ساختگاه، مقایسه‌ای بین نتایج شبیه‌سازی 19 سناریوی آزمایشی با پارامترهای متفاوت نسبت به سناریوی مرجع، انجام گرفته است. برای دستیابی به این هدف گسل نیاوران در شمال تهران به‌عنوان گسل هدف انتخاب شد که با بزرگی گشتاوری 7 به‌ترتیب باعث ایجاد میانگین شتاب و سرعت حداکثر 600 سانتی‌متر بر مجذور ثانیه و 60 سانتی‌متر بر ثانیه در محدوده‌ی مورد مطالعه می‌شود. بر اساس نتایج، پارامترهای بزرگی گشتاوری، افت تنش، بخش مربوط به فرکانس فاکتور کیفیت، توزیع هندسی و کاپا بیشترین اثر و پارامترهای شیب گسل، نقطه‌ی شروع گسیختگی، سرعت گسیختگی، سطح تپنده دارای کمترین اثر بر نتایج هستند. همچنین محدوده‌ی پایین فرکانسی (کمتر از 1 هرتز) توسط پارامترهای نقطه‌ی شروع گسیختگی و بزرگی گشتاوری و حرکت‌های با فرکانس‌های بالاتر توسط پارامترهای افت تنش، فاکتور کیفیت، کاپا و بزرگی گشتاوری کنترل می‌شوند.

کلیدواژه‌ها


عنوان مقاله [English]

Sensitivity of Ground Motion Simulation Results to Input Parameters Using Stochastic Finite Fault Method: A Case Study for Niavaran Fault, Tehran

نویسندگان [English]

  • Jafar Karashi 1
  • Meghdad Samaei 2
  • Abdolhossein Fallahi 1
1 Azarbaijan Shahid Madani University, Tabriz, Iran
2 Kanazawa University, Kanazawa, Japan
چکیده [English]

1. Introduction
In strong ground motion simulation methods, results are strongly dependent on the accuracy of input parameters; so that the resultant peak parameters, frequency content and the duration of motion could be easily affected. In the current study, for investigating this matter further, the extent in which each parameter influences the results, has been examined. For this purpose, a reference simulation scenario considering Niavaran fault has been assumed first. Then, by increasing and decreasing input parameters, 19 other scenarios have been considered and the results have been explored.
 2. Methodology
Stochastic finite fault method [1] was used for ground motion simulation. In this method, which has its roots in stochastic point source method [2], the fault plane is divided into sub-faults, each of which acting as a point source. Resultant recordings from each sub-fault are added in the observation point considering their time delays so the main recording is obtained. Stochastic methods benefit from using the Fourier amplitude of motion that includes the effects of source, path and site. Therefore, in this study, by changing each of these parameters and parameters relating to the geometry of the fault, accurate selection of these parameters are illustrated. Niavaran fault with length and width of 44 and 20 km respectively, has the capacity of producing an earthquake with magnitude 7. By changing the dip and rupture starting point as fault geometrical parameters, moment magnitude, rupture velocity, stress drop and pulsing area as source parameters, quality factor and geometrical spreading as path parameters and kappa as site parameter, we investigated the effect of uncertainty of these parameters on the results.
3. Results and discussion
At first, the simulation was done for the reference scenario with magnitude 7 and on engineering bedrock (Vs(30)=620 m/s) for distances up to 60 km from the fault plane. It should be noted that rupture starting point was decided based on the study of Chiou and Youngs [3] and other parameters are chosen based on the study of Motazedian [4]. For the site amplification Boor and Joyner [5] curves were used. For this scenario, at closest point with 3 km distance from the fault plane, PGA reaches 600 cm/c/c and PGV to about 60 cm/s. Most motions are observed in near field points, especially those above the rupture plane in the area of 1300 km2 which an average have acceleration of 330 cm/s/s. The results for PGA and PGV are compared with four ground motion prediction equations and seem to be satisfactory. Considering that the target fault is within the area of Tehran, this scenario can be a real threat to the city. After comparing the testing scenario with the reference one, the effects of uncertainty could be stated as follows:
Parameters that have the most significant effects on the motions are the parameters with greater moment magnitude, greater stress drop, greater b coefficient of geometrical spreading and smaller kappa. Therefore these parameters could be called “worst case scenario” since these scenarios besides having larger PGA and PGV, have a bigger area affected with peak parameters.
Effects of uncertainty of parameters have also been investigated in frequency domain. Motions with low frequency are usually controlled by rupture starting point and moment magnitude parameters, which have most effects on larger structures. Higher frequencies which are more important for smaller structures are controlled by stress drop and quality factor parameters.
The most important effects of tested scenarios compared to the reference one is observed in distances under 30 km, therefore it is necessary for the near field hazard analysis that parameters with highest accuracy are considered.
References

Motazedian, D. and Atkinson, G.M. (2005) Stochastic finite-fault modeling based on a dynamic corner frequency. Bulletin of the Seismological Society of America, 95, 995-1010.
Boore, D.M. (1983) Stochastic simulation of high-frequency ground motions based on seismological models of the radiated spectra. Bulletin of the Seismological Society of America, 73, 1865-1894.
Chiou, B.S.-J. and Youngs, R.R. (2008) NGA Model for the Average Horizontal Component of Peak Ground Motion and Response Spectra. PEER Report No. 2008/09, Pacific Earthquake Engineering Research Center, University of California, Berkeley.
Motazedian, D. (2006) Region-specific key seismic parameters for earthquakes in Northern Iran. Bulletin of the Seismological Society of America, 96, 1383-1395.
Boore, D.M. and Joyner, W.B. (1997) Site Amplification for Generic Rock Sites. Bulletin of the Seismological Society of America, 87, 327-341.

کلیدواژه‌ها [English]

  • Strong Motion Simulation
  • Earthquake Scenario
  • Parameter Uncertainty
  • EXSIM
  • Niavaran Fault
  1. Atkinson, G.M., Beresnev, I.A. (2002) Ground motions at Memphis and St. Louis from M7.5-8.0 earthquakes in the New Madrid seismic zone. Bulletin of the Seismological Society of America, 92(3), 1015–1024.
  2. Pulido, N., Ojeda, A., Atakan, K., and Kubo, T. (2004) Strong ground motion estimation in the Sea of Marmara region (Turkey) based on a scenario earthquake. Tectonophysics, 391, 357–374.
  3. Aochi, H., and Douglas, J. (2006) Testing the validity of simulated strong ground motion from the dynamic rupture of a finite fault, by using empirical equations. Bull. Earthq. Eng., 4, 211–229.
  4. Sørensen, M.B., Pulido, N., and Atakan, K. (2007) Sensitivity of ground motion simulations to earthquake source parameters: a case study for Istanbul, Turkey. Bulletin of the Seismological Society of America, 97(3), 881– 900.
  5. Causse, M., Cotton, F., Cornou, C., Bard, P.Y. (2008) Calibrating median and uncertainty estimates for a practical use of empirical Green’s functions technique. Bulletin of the Seismological Society of America, 98(1), 344–353.
  6. Aagaard, B.T., Graves, R.W., Schwartz, D.P., Ponce, D.A., and Graymer, R.W. (2010a) Ground motion modeling of Hayward fault scenario earthquakes, Part I: Construction of the suite of scenarios. Bulletin of the Seismological Society of America, 100(6), 2927–2944.
  7. Aagaard, B.T., Graves, R.W., Rodgers, A., Brocher, T.M., Simpson, R.W., Dreger, D., Petersson, N.A., Larsen, S.C., Ma, S., Jachens, R.C. (2010b) Ground-motion modeling of Hayward fault scenario earthquakes, Part II: Simulation of long-period and broadband ground motions. Bulletin of the Seismological Society of America, 100(6), 2945–2977.
  8. Cultrera, G., Cirella, A., Spagnuolo, E., Herrero, A., Tinti, E., Pacor, F. (2010) Variability of kinematic source parameters and its implication on the choice of the design scenario. Bulletin of the Seismological Society of America, 100(3), 941–953.
  9. Ameri, G., Emolo, A., Pacor, F., Gallovič, F. (2011) Ground-motion simulations for the 1980 M6.9 Irpinia earthquake (southern Italy) and scenario events. Bulletin of the Seismological Society of America, 101(3), 1136–1151.
  10. Bjerrum, W.L., Sørensen, M.B., Ottemoller, L., Atakan, K. (2013) Ground motion simulations for Izmir, Turkey: parameter uncertainty. J. Seismol., DOI 10.1007/s10950-013-9389-9.
  11. Ritz, J.F., Nazari, H., Balescu. S., Lamothe, M., Salamati, R., Ghassemi, A., Shafei, A., Ghorashi, M., and Saidi, A. (2012) Paleoearthquakes of the past 30,000 years along the North Tehran Fault (Iran). Journal of Geophysical Research, 117(B6).
  12. Samaei, M., Barzegari, A., Ghavimipanah, M.R., Ja'afari, F., and Shami, A. (2017) Simulation of probable scenarios of earthquakes occurrences in Tehran. Scientific Quarterly Journal, Geosciences, 26(103), 139-154 (in Persian).
  13. Beresnev, I., and G.M. Atkinson (1998) FINSIM: A FORTRAN program for simulating stochastic acceleration time histories from finite faults. Seismol. Res. Lett., 69, 27–32.
  14. Motazedian, D., and Atkinson, G.M. (2005) Stochastic finite-fault modeling based on a dynamic corner frequency. Bulletin of the Seismological Society of America, 95, 995–1010.
  15. Boore, D.M. (1983) Stochastic simulation of high-frequency ground motions based on seismological models of the radiated spectra. Bulletin of the Seismological Society of America, 73, 1865–1894.
  16. Boore, D.M. (2003) Simulation of ground motion using the stochastic method. Pure Appl. Geophys., 160, 635–675.
  17. Halldorsson, B., and A.S. Papageorgiou (2005) Calibration of the specific barrier model to earthquakes of different tectonic regions. Bull. Seismol. Soc. Am., 95, 1276–1300.
  18. Soghrat, M.R., Khaji, N., & Zafarani, H. (2012) Simulation of strong ground motion in northern Iran using the specific barrier model. Geophysical Journal International, 188(2), 645–679.
  19. Zafarani, H., & Soghrat, M. (2012) Simulation of ground motion in the Zagros region of Iran using the specific barrier model and the stochastic method. Bulletin of the Seismological Society of America, 102(5), 2031–2045.
  20. Kohrs-Sansorny, C., Courboulex, F., Bour, M. and Deschamps, A. (2005) A two-stage method for ground motion simulation using stochastic summation of small earthquakes. Bull. Seismol. Soc. Am. 95, 1378–1400.
  21. Zafarani, H., and Noorzad, A. (2014) Engineering Seismology and Earthquake Simulation Methods. University of Tehran Press, first edition, Tehran-Iran (in Persian).
  22. Boore, D.M. (2009) Comparing stochastic point-source and finite-source ground-motion simulations: SMSIM and EXSIM. Bulletin of the Seismological Society of America, 99, 3202–3216.
  23. Boore, D.M., and Thompson, M.E. (2015) Revisions to some parameters used in stochastic-method simulations of ground motion. Bulletin of the Seismological Society of America, 105, 1029–1041.
  24. Hartzell, S. (1978) Earthquake aftershocks as Green’s functions. Geophys. Res. Lett. 5: 1–4.
  25. Irikura, K. (1983) Semi-empirical estimation of strong ground motions during large earthquakes. Bull. Disast. Prev. Res. Inst. Kyoto Univ, 33, 63–104.
  26. Joyner, W.B., and Boore, D.M. (1986) On simulating large earthquakes by Green’s function addition of smaller earthquakes, in Earthquake Source Mechanics, S. Das, J. Boatwright, and C. H. Scholz (Editors), American Geophysical Monograph, 37, 269–274.
  27. Motazadian, D., and Moinfar, A. (2006) Hybrid stochastic finite fault modeling of 2003, M6.5, Bam earthquake (Iran). Journal of Seismology, 10, 91–103.
  28. Abbassi, M. R., and Farbod, Y. (2009) Faulting and folding in quaternary deposits of Tehran’s piedmont (Iran). Journal of Asian Earth Sciences, 34, 522–531.
  29. Arian, M., Bagha, N., Khavari, R., Noroozpoor, H. (2012) Seismic sources and neo-tectonics of Tehran area (North Iran). Indian Journal of Science and Technology, 5(3), 2379–2383.
  30. Samaei, M. (2013) Strong Ground Motion Prediction for Tehran Region, Iran. Doctoral Thesis, Kanazawa University, Japan.
  31. Wells, D.L., and Coppersmith, K.J. (1994) New empirical relationships among magnitude, rupture length, rupture width, rupture area and surface displacement. Bulletin of the Seismological Society of America, 84, 974–1002.
  32. Mai, M., Spudich, P., and Boatwright, J. (2005) Hypocenter location in finite source rupture models. Bulletin of the Seismological Society of America, 95(3), 965–980.
  33. Chiou, B. S.-J., and Youngs, R.R. (2008) NGA Model for the Average Horizontal Component of Peak Ground Motion and Response Spectra. PEER Report No. 2008/09, Pacific Earthquake Engineering Research Center, University of California, Berkeley.
  34. Motazedian, D. (2006) Region-specific key seismic parameters for earthquakes in Northern Iran. Bulletin of the Seismological Society of America, 96, 1383–1395.
  35. Boore, D.M. and Joyner, W.B. (1997) Site Amplification for Generic Rock Sites. Bulletin of the Seismological Society of America, 87, 327–341.
  36. Zafarani, H., Hassani, B. and Ansari, A. (2012) Estimation of earthquake parameters in the Alborz seismic zone, Iran using generalized inversion method. Soil Dynamics and Earthquake Engineering, 42, 197–218.
  37. Zafarani, H., Rahimi, M., Noorzad, A., Hassani, B., and Khazaei, B. (2015) Stochastic simulation of strong-motion records from the 2012 Ahar–Varzaghan dual earthquakes, northwest of Iran. Bulletin of the Seismological Society of America, 105(3).
  38. Wassel, P., Smith, W.H.F. (1998) New improved version of the Generic Mapping Tools released. EOS Trans. Am. Geophys. Union, 79, 579.
  39. Saffari, H., Kuwata, Y., Takada, S., Mahdavian, A. (2012) Updated PGA, PGV, and spectral acceleration attenuation relations for Iran. Earthquake Spectra, 28, 1–20.
  40. Boore, D.M., and Atkinson, G.M. (2008) Ground-motion prediction equations for the average horizontal component of PGA, PGV, and 5%-damped PSA at spectral periods between 0.01 s and 10.0 s. Earthquake Spectra, 24, 99–138.
  41. Kale, Ö., Akkar, S., Ansari, A., & Hamzehloo, H. (2015) A ground‐motion predictive model for Iran and Turkey for horizontal PGA, PGV, and 5% damped response spectrum: Investigation of possible regional effects. Bulletin of the Seismological Society of America, 105(2A), 963–980.
  42. Soghrat, M.R., & Ziyaeifar, M. (2017) Ground motion prediction equations for horizontal and vertical components of acceleration in northern Iran. Journal of Seismology, 21(1), 99–125.
  43. Abrahamson, N.A., and Somerville, P.G. (1996) Effects of the hanging wall and footwall on ground motions recorded during the Northridge earthquake. Bulletin of the Seismological Society of America, 86(1), 93–99.
  44. Shabestari, K.T., and Yamazaki, F. (2003) Near-fault spatial variation in strong ground motion due to rupture directivity and hanging wall effects from the Chi-Chi, Taiwan earthquake. Earthq. Eng. Struct. Dynam., 32(14), 2197–2219.
  45. Ghofrani, H., Atkinson, M.G., Goda, K., and Assatourians, K., (2013) Stochastic finite-fault simulation of the 2011 Tohoku, Japan, Earthquake. Bulletin of the Seismological Society of America, 103, 1307–1320.
  46. Crain, S. and Motazadian, D., (2014) Low-frequency scaling applied to stochastic finite-fault modeling. J. Seismol., 18, 109–122.
  47. Anderson, J.G., and Hough, S.E. (1984) A model for the shape of the Fourier amplitude spectrum of acceleration at high frequencies. Bulletin of the Seismological Society of America, 74, 1969–1993.
  48. Ktenidou, J.O., Gelis, C., and Bonilla, F.L. (2013) A study on the variability of Kappa (κ) in a Borehole: Implications of the computation process. Bulletin of the Seismological Society of America,
  49. (2A), 1048–1068.
  50. Samaei, M., Miyajima, M., Yazdani, A., and Jaafari, A. (2016) High frequency decay parameter (kappa) for Ahar-Varzaghan double earthquakes, Iran (Mw 6.5 & 6.3). Journal of Earthquake and Tsunami, 10(2), 1640006_1-1640006_14.
  51. BHRC (2015) Iranian Code of Practice for Seismic Resistant Design of buildings, Standard No.2800. 4th Edition Road, Housing and Urban Development Research Center (in Persian).
  52. Statistical Center of Iran (2011) General Counting of People and Housing, General Results of Tehran. PP 25 (in Persian).
  53. Gholipour, Y., Bozorgnia, Y., Rahnama, M., Berberian, M., Ghorashi, M., Talebian, Nazari, H., Shoja-Taheri, J., and Shafiei, A. (2008) Probabilistic Seismic Hazard Analysis - Phase I, Greater Tehran Regions, 180.