ارزیابی روابط ریاضی سرعت موج برشی و نتایج آزمون نفوذ استاندارد با رویکرد آمار بیزین

نوع مقاله : Articles

نویسندگان

1 گروه مهندسی عمران، واحد اهواز، دانشگاه آزاد اسلامی، اهواز، ایران

2 گروه مهندسی عمران، واحد شوشتر، دانشگاه آزاد اسلامی، شوشتر، ایران

چکیده

سرعت موج برشی به‌عنوان یکی از مهم‌ترین پارامترهای ژئوفیزیکی می‌باشد که پاسخ لرزه‌ای سایت‌ها در قالب آن بیان می‌شود. این پارامتر لرزه‌ای اطلاعات ارزشمندی راجع به ساختگاه پروژه را می‌دهد اما ازآنجایی‌که آزمایش‌های ژئوفیزیکی معمولاً گران و زمان‌بر هستند استفاده از روش‌های غیر مستقیم به‌منظور کاهش هزینه‌ها رو به افزایش است. تحقیقات زیادی دراین‌باره در مناطق مختلف جهان انجام شده است که در اکثریت آنها از دو معادله توانی ساده و توانی چندگانه جهت استخراج معادلات استفاده کرده‌اند. اما این تحقیق با استفاده از توابع جدید تعریف شده توسط آمار بیزین نشان داده است که معادلاتی با اعتباری به‌مراتب بیشتر از روابط موجود در سوابق تحقیق می‌توانند جهت تخمین سرعت موج برشی به‌کار گرفته شوند.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of Mathematical Relationships of Shear Wave Velocity and Standard Penetration Test Results with Bayesian Statistics Approach

نویسندگان [English]

  • Solmaz Charoosaei 1
  • Navid Khayat 1
  • Mehdi Mahdavi Adeli 2
1 Department of Civil Engineering, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran
2 Department of Civil Engineering, Shoushtar Branch, Islamic Azad University, Shoushtar, Iran
چکیده [English]

Shear wave velocity is one of the most important geophysical parameters in which the seismic response of the sites is expressed. This seismic parameter gives valuable information about the project site, but since geophysical tests are usually expensive and time consuming, the use of indirect methods to reduce costs is increasing. Much research has been done in different regions of the world, in most of them have used both simple power equations and multiple power equations to derive equations. However, in this paper, a comprehensive study is conducted to evaluate the effects of standard penetration number and depth on shear wave velocity estimation as one of the most important soil dynamic parameters with Bayesian statistics approach. In summary, data from 28 boreholes drilled in three cities of Hormozgan province were collected. The collected data were subdivided into four main categories of all soils: clay soils, silty soils, sandy and gravel soils. In this way, the researchers identified 8 variables and 13 functions with the help of Bayesian statistics to determine the mathematical functions with greater reliability, taking into account standard penetration number, depths or a combination of both. The results of this analysis showed that the standard penetration number parameter alone for all soils and classifications as well as simple and multiple power equations are not the best parameter and equations in predicting shear wave velocity, respectively. Other results can be pointed out that soil clustering is not always the most effective factor in estimating shear wave velocity. Finally, it is suggested that if the correlation equation is defined on the basis of standard penetration number with higher confidence percentage, the equation will be extracted by intervals from standard penetration number. In addition, despite the results, it should be noted that these equations have been developed for a specific site and these results should be used with regard to site specific arrangements with other geotechnical conditions.

کلیدواژه‌ها [English]

  • Shear wave velocity
  • SPT
  • Statistical Correlation
  • Bayesian Statistics
  1. Hanumantharao, C. and Ramana, G. (2008) Dynamic soil properties for microzonation of Delhi, India. Journal of earth system science, 117(2), 719-730.
  2. Choi, Y. and Stewart, J.P. (2005) Nonlinear site amplification as function of 30 m shear wave velocity. Earthquake Spectra, 21(1), 1-30.
  3. Andrus, R.D., Fairbanks, C.D., Zhang, J., Camp, W.M., Casey, T.J., Cleary, T.J., Wright, W.B. (2006) Shear-wave velocity and seismic response of near-surface sediments in Charleston, South Carolina. Bulletin of the Seismological Society of America, 96(5), 1897-1914.
  4. Esfehanizadeh, M., Nabizadeh, F. and Yazarloo, R. (2015) Correlation between standard penetration (NSPT) and shear wave velocity (VS) for young coastal sands of the Caspian Sea. Arabian Journal of Geosciences, 8(9), 7333-7341.
  5. Rollins, K.M., Diehl, N.B. and Weaver, T.J. (1998) Implications of V s-BPT (N 1) 6 0 Correlations for Liquefaction Assessment in Gravels. Geotechnical Earthquake Engineering and Soil Dynamics III, ASCE.
  6. Thaker, T. and Rao, K. (2011) Development of statistical correlations between shear wave velocity and penetration resistance using MASW technique. Geo-Innovation Addressing Global Challenges, Toronto, Ontario, Canada,.
  7. Nazarian, S. (1984) In situ shear wave velocities from spectral analysis of surface wave. Proceedings of 8th Conference on Earthquake Engineering, San Francisco.
  8. Jafari, M.K., Shafiee, A. and Razmkhah, A. (2002) Dynamic properties of fine grained soils in south of Tehran. Journal of Seismology and Earthquake Engineering, 4(1), 25-35.
  9. Hasancebi, N. and Ulusay, R. (2007) Empirical correlations between shear wave velocity and penetration resistance for ground shaking assessments. Bulletin of Engineering Geology and the Environment, 66(2), 203-213.
  10. Fauzi, A., Irsyam, M. and Fauzi, U.J. (2014) Empirical correlation of shear wave velocity and N-SPT value for Jakarta. Int. J. GEOMATE, 7(1), 980-984.
  11. Brown, L.T., Boore, D.M. and Stokoe, K.H. (2002) Comparison of shear-wave slowness profiles at 10 strong-motion sites from noninvasive SASW measurements and measurements made in boreholes. Bulletin of the Seismological Society of America, 92(8), 3116-3133.
  12. Andrus, R., Zhang, J., Ellis, B.S., Juang, C.H. (2003) Guide for Estimating the Dynamic Properties of South Carolina Soils for Ground Response Analysis.
  13. Silva, W., Wong, I., Siegel, T., Gregor, N., Darragh, R., Lee, R. (2003) Ground motion and liquefaction simulation of the 1886 Charleston, South Carolina, earthquake. Bulletin of the Seismological Society of America, 93(6), 2717-2736.
  14. Mohanan, N.P., et al. (2006) Electronic Files of Shear Wave Velocity and Cone Penetration Test Measurements from the Greater Charleston Area, South Carolina. Data Rep. to the US Geological Survey, Award No. 05HQGR0037.
  15. Seed, H. and Idriss, I. (1981) Evaluation of liquefaction potential sand deposits based on observation of performance in previous earthquakes. ASCE National Convention (MO).
  16. Lee, S.H.H. (1990) Regression models of shear wave velocities in Taipei basin. Journal of the Chinese Institute of Engineers, 13(5), 519-532.
  17. Jafari, M., Asghari, A., and Rahmani, I. (1997) Empirical correlation between shear wave velocity (Vs) and SPT-N value for south of Tehran soils. Proc. 4th International Conference on Civil Engineering.
  18. Ohta, Y. and Goto, N. (1978) Empirical shear wave velocity equations in terms of characteristic soil indexes. Earthquake Engineering & Structural Dynamics, 6(2), 167-187.
  19. Brandenberg, S.J., Bellana, N. and Shantz, T. (2010) Shear wave velocity as function of standard penetration test resistance and vertical effective stress at California bridge sites. Soil Dynamics and Earthquake Engineering, 30(10), 1026-1035.
  20. Ghorbani, A., Jafarian, Y. and Maghsoudi, M.S. (2012) Estimating shear wave velocity of soil deposits using polynomial neural networks: Application to liquefaction. Computers & Geosciences, 44, 86-94.
  21. Standard, A. (2008) Standard test method for standard penetration test (SPT) and split-barrel sampling of soils.
  22. Lee, S. (1988) Regression model for shear wave velocity of sandy and silty soils of Taipei basin. Proc. of the CCNAA-AIT Joint Seminar/Workshop on Research and Application for Multiple Hazards Mitigation, Taipei.
  23. Der Kiureghian, A. (1999) A Bayesian framework for fragility assessment. Proc., ICASP8 Conference.
  24. Brezger, A. and Lang, S. (2006) Generalized structured additive regression based on Bayesian P-splines. Computational Statistics & Data Analysis, 50(4), 967-991.
  25. Brezger, A. and Lang, S. (2008) Simultaneous probability statements for Bayesian P-splines. Statistical Modelling, 8(2), 141-168.