تعمیم نسل جدید روابط کاهندگی برای پیش بینی بیشینه شتاب زمین با استفاده از روش تحلیل بازنمونه گیری از داده ها

نوع مقاله : Articles

نویسندگان

1 گروه مهندسی عمران، دانشکده فنی مهندسی، دانشگاه اراک، اراک، ایران

2 دانشکده فنی مهندسی، دانشگاه اراک، اراک، ایران

چکیده

پیش­­بینی واقع­گرایانه بیشینه شتاب زمین (PGA)، به‌منظور استفاده در طراحی سازه­ های مقاوم در برابر زلزله، به‌خصوص در مناطق لرزه­ خیز از اهمیت ویژه­ ای برخوردار است. با استفاده از تحلیل خطر احتمالاتی زلزله، میزان لرزه­ خیزی یک منطقه هنگام وقوع زلزله مشخص می­گردد. بنابراین یکی از مهم‌ترین بخش­های تحلیل خطر، پیش­بینی جنبش­های نیرومند زمین می­باشد که توسط روابطی موسوم به روابط کاهندگی به دست می­ آیند. مرکز مطالعات مهندسی زلزله (Peer) روابطی را تحت عناوین روابط کاهندگی NGA-West1 و NGA-West2 برای کل جهان ارائه نموده است. ازآنجاکه یک رابطه کاهندگی باید بتواند در برابر آزمون­های آماری نظیر آزمون تحلیل باز­نمونه ­گیری از داده­ ها که اخیراً توسط آذربخت و همکاران [1] ارائه گردیده است، نتایج مطلوبی را در بر داشته باشد، بنابراین در این پژوهش سعی می­ شود ضرایب برخی روابط کاهندگی نسل جدید نظیر کمپبل و بزرگ‌نیا [2]، آبراهامسون و سیلوا [3] و رابطه بور و اتکینسون [4] بر اساس مجموعه داده­ های منتشر شده توسط مرکز مطالعات مهندسی زلزله و با بهره­ گیری از الگوریتم ژنتیک چند هدفه، برای بیشینه شتاب زمین، بهینه‌سازی شوند. نتایج بیانگر تطبیق خوب روابط به‌دست‌آمده در برابر سایر آزمون­ های آماری می­باشد. انتظار می­رود بتوان از نتایج حاصل از این پژوهش در تحلیل خطر احتمالاتی زلزله بهره گرفت.

کلیدواژه‌ها


عنوان مقاله [English]

Adaptation of the NGA-WEST2 Ground Motion Prediction Equations by Implementing the Resampling Analysis Algorithm

نویسندگان [English]

  • Alireza Azarbakht 1
  • Hamed Zeinali 2
  • Zinat Rajabi 2
1 Department of Civil Engineering, Faculty of Engineering, Arak University, Iran, and Department of Civil and Environmental Engineering, University of Strathclyde, Glasgow, UK
2 Department of Civil Engineering, Faculty of Engineering, Arak University, Iran
چکیده [English]

The realistic estimation of Peak Ground Acceleration (PGA) is crucial for the purpose of seismic design in high seismic prone regions. The common practice is using Seismic Hazard Analysis (SHA) to estimate the design spectra in order to be used in the design and rehabilitation of structures. The most influential part of any SHA is the use of Ground Motion Prediction Equation (GMPE), which usually has the highest level of epistemic uncertainty.
The Pacific Earthquake Research Centre (PEER) have released two sets of GMPEs, which are known as NGA-WEST1 and NGA-WEST2, and they are introduced as global GMPEs for all regions around the globe. However, the reliability of GMPEs needs to be assessed properly. Therefore, a recent methodology by Azarbakht et al. (2014) has been implemented in this study in order to enhance the given GMPEs only in the case of PGA. The better model in this approach is the one which has less sensitivity due to the small changes in the input catalogue. This effect cannot be captured by the common statistical tests that are widely using in the development of GMPEs. Therefore, three NGA GMPEs are taken into consideration, and the coefficients are optimized by aiming at maximizing the reliability, i.e. Campbell and Bozorgnia, Abrahamson and Silva, and Boore and Atkinson GMPEs. The ground motion database of the Campbell and Bozorgnia (2014) was used throughout this study, which consists of 15493 records of 319 earthquake events.
A multi-objective Genetic algorithm was used to optimize four fitness functions, three of them related to resampling of the data and the forth is taken as the LLH. The results show that the employed resampling analysis show better performance when compared to other statistical approaches such as Var-test, Lillifors, and Z-test. However, the optimized coefficients show better GMPE performance with those statistical tests. Error estimation approaches were also considered, i.e. RMSE, MAE, R-square and E methods. In the end, the hazard curves for a hypothetical site are calculated based on the original and optimized GMPEs. The comparison between the obtained hazard curves shows that the hazard curves obtained from the optimized coefficients result in conservative when compared to the hazard curves from the original GMPEs. In conclusion, the optimized GMPEs show better performance when compared to the original GMPEs by means of the common statistical approaches as well as the new resampling algorithm. This proves that the sensitivity of GMPEs to the input catalogue is a key criterion when developing a new GMPE, otherwise the estimated parameters such as PGA will not be accurate enough.

کلیدواژه‌ها [English]

  • seismic hazard analysis
  • New-Generation of Ground Motion Prediction Equation (GMPE)
  • Multi-Objective Genetic Algorithm
  • Sensitivity analysis
  • Seismic Hazard Catalogue
  1. - Azarbakht, A., Rahpeyma, S., Mousavi, M. (2014) A new methodology for assessment the stability of Ground Motion Prediction Equations. Bulletin of the Seismological Society of America, 104(3), doi:10.1785/0120130212.
  2. - Campbell, K.W. (2014) NGA-West2 Campbell-Bozorgnia ground motion model for the horizontal components of PGA, PGV, and 5%-damped elastic pseudo-acceleration response spectra for periods ranging from 0.01 to 10 sec. Earthquake Spectra.
  3. - Abrahamson, N.A., Silva, W.J. (2008) Summary of the Abrahamson & Silva NGA ground motion relations. Earthquake Spectra, 24, 67-97.
  4. - Boore, D.M., Atkinson, G.M. (2008) Ground-Motion Prediction Equations for the Average Horizontal Component of PGA, PGV, and 5%-Damped PSA at Spectral Periods between 0.01 s and 10.0 s. Earthquake Spectra, 24(1), 99-138.
  5. - Toro, G. (2006) The effects of ground-motion uncertainity on seismic hazard results: Examples and approximate results. Annual Meeting of the Seismo Seismological Society of America, San Francisco.
  6. - Rahpeyma, S.A., Azarbakht, A. (2015) Compatibility Assessment Of Ground Motion Attenuation Models With The Iran Plateau Database. Civil Engineering Sharif, 31.2(1.1), 137-146.
  7. - PEER, Pacific Earthquake Engineering Research Center, NGA Database, University of California, Berkeley. Available from: http://peer.berkeley.edu/ngawest/nga.
  8. - Scherbaum, F., Delavaud, E. and Riggelsen, C. (2009) Model selection in seismic hazard analysis: an information-theoretic perspective. Bulletin of the Seismological Society of America, 99, 3234-3247.
  9. - زينلي حامد (1395) توسعه نسل Ø‌ديد روابط کاهندگي براي پيشÂ‌بيني بيشينه شتاب زمين با استفاده از روش تحليل بازنمونهÂ‌گيري از دادهÂ‌ها. پايان‌نامه ارشد، دانشگاه فني مهندسي اراک، زمستان.
  10. - Campbell, K.W., Bozorgnia, Y. (2008) NGA Ground Motion Model for the Geometric Mean Horizontal Component of PGA, PGV, PGD and 5% Damped Linear Elastic Response Spectra for Periods Ranging from 0.01 to 10 s. Earthquake Spectra, 24(1), 139-171.
  11. - Chiou, B.S.J., Youngs, R.R. (2008) An NGA Model for the Average Horizontal Component of Peak Ground Motion and Response Spectra. Earthquake Spectra, 24(1), 173-215.
  12. - Boore, D.M., Stewart, J.P., Seyhan, E., Atkinson G.M. (2013) NGA-West2 Equations for Predicting Response Spectral Accelerations for Shallow Crustal Earthquakes. PEER Report 5.
  13. - Chiou, B.S.J., Youngs, R.R. (2014) Update of the Chiou and Youngs NGA model for the average horizontal component of peak ground motion and response spectra. Earthquake Spectra, 30(3), 1117-1153.
  14. - Abrahamson, N.A., Silva, W.J., Kamai, R. (2013) Update of the AS08 Ground-Motion Prediction Equations Based on the NGA-West2 Data Set. Pacific Engineering Research Center Report 4.
  15. - Abrahamson, N.A., Youngs, R.R. (1992) Short Notes: A stable algorithm for regression analyses using the random effects model. Bulletin of the Seismological Society of America, 82, 505-510.
  16. - Turchin, P., Grinin, L., Korotayev, A., Munck, V.C. de (2007) History and mathematics: Historical Dynamics and Development of Complex Societies.
  17. - Delavaud, E., Scherbaum, F., Kuehn, N., Riggelsen, C. (2009) Information-Theoretic Selection of Ground-Motion Prediction Equations for Seismic Hazard Analysis: An Applicability Study Using Californian Data. Bulletin of the Seismological Society of America, 99, 3248-3263.
  18. - Scherbaum, F., Cotton, F. and Smit, P. (2004) On the use of response spectralreference data for the selection of ground-motion models for seismic hazard analysis: The case of rock motion. Bulletin of the Seismological Society of America, 94(6), 341-348.
  19. - Bazzurro, P. and Cornell, C.A. (1999) Disaggregation of seismic hazard. Bulletin of the Seismological Society of America, 501-520.
  20. - Baker, J.W. (2008) An Introduction to Probabilistic Seismic Hazard Analysis (PSHA). version 1.3, Available online : http://www.stanford.edu/~bakerjw., p. 72.