تشخیص خرابی سازه تیر با استفاده از تحلیل آماری پاسخ‌های اندازه‌گیری شده و تبدیل هیلبرت-هوانگ

نوع مقاله : Articles

نویسندگان

گروه مهندسی عمران، واحد قزوین، دانشگاه آزاد اسلامی، قزوین، ایران

چکیده

در این مقاله یک روش جدید تشخیص خرابی بر اساس تبدیل هیلبرت- هوانگ پاسخ‌های اندازه‌گیری شده سازه تیر ارائه شده است. توابع مودی ذاتی پاسخ‌های دینامیکی سازه با استفاده از تجزیه مودی تجربی در نقاط مشخص محاسبه شده و تبدیل هیلبرت برای محاسبه دامنه آنی بر روی هر تابع مودی ذاتی به کار برده شده است. ضریب همبستگی و تابع همبستگی متقابل دامنه آنی پاسخ‌های سالم و خراب سازه محاسبه شده‌اند. محل خرابی از طریق تعریف پارامتر شاخص خرابی و مقایسه نمودار آنها در حالت‌های سالم و خراب به دست آمده‌اند. برای ارزیابی و دقت روش یک مدل المان محدود سازه تیر بتنی دو دهانه مدل شده است. پاسخ‌های دینامیکی تیر با استفاده از تحلیل عددی تحت بارگذاری مثلثی مشخص به دست آمده‌اند. با توجه به نوفه‌های اندازه‌گیری، به پاسخ‌های دینامیکی مقادیر نوفه اضافه شده و نتایج مورد بررسی قرار گرفته است. نتایج حاصل نشان دادند که روش ارائه شده محل خرابی را با دقت خوبی تشخیص می‌دهد.

کلیدواژه‌ها


  1. Khosraviani, M.J. and Ghasemi, M. (2016) Output-only damage detection in beam structures using statistical analysis of Hilbert-Huang Transformation of measured response. Proceeding of 8th European Workshop on Structural Health Monitoring, EWSHM 2016. Bilbao, Spain.
  2. Knitter-Piatkowska, A., Garbowski, T. and Garstecki, A. (2012) Damage detection through wavelet transform and inverse analysis. Proceeding of 8th European Conf. on Solid Mechanics, ESMC 2012. Graz, Austria.
  3. Hou, Z., Noori, M. and Amand, R.S. (2000) Wavelet-based approach for structural damage detection. Journal of Engineering Mechanics, 126(7), 677-683.
  4. Han, J., Zheng, P. and Wang, H. (2014) Structural modal parameter identification and damage diagnosis based on Hilbert-Huang transform. Earthquake Engineering and Engineering Vibration, 13(1), 101-111.
  5. Farrar, C.R. and Jauregui, D.A. (1998) Comparative study of damage identification algorithms applied to a bridge: II. Numerical study. Smart Materials and Structures, 7, 720.
  6. Vestroni, F. and Stefano, V. (2008) Damage Detection with Auxiliary Subsystems. Springer Vienna.
  7. Littler, J.D. and Ellis, B.R. (1995) Measuring the dynamic characteristics of prototype structures. A State of the Art in Wind Engineering, Wiley Eastern Limited, New Delhi, 133-154.
  8. Melhem, H. and Kim, H. (2003) Damage detection in concrete by Fourier and wavelet analyses. Journal of Engineering Mechanics, 129(5), 571-577.
  9. Nag, A., Mahapatra, D.R. and Gopalakrishnan, S. (2002) Identification of delamination in a composite beam using a damaged spectral element. Structural Health Monitoring, 1(1), 105-126.
  10. Lee, B. C. and Staszewski, W. J. (2003) Modelling of Lamb waves for damage detection in metallic structures: Part I. Wave propagation. Smart Materials and Structures, 12(5), 804.
  11. Staszewski, W.J. (1998) Structural and mechanical damage detection using wavelets. The Shock and Vibration Digest, 30(6), 457-472.
  12. Kijewski, T. and Kareem, A. (2003) Wavelet transforms for system identification in civil engineering. Computer‐Aided Civil and Infrastructure Engineering, 18(5), 339-355.
  13. Mallat, S. (1999) A Wavelet tour of Signal Processing. Academic press.
  14. Piombo, B.A.D., Fasana, A., Marchesiello, S. and Ruzzene, M. (2000) Modelling and identification of the dynamic response of a supported bridge. Mechanical Systems and Signal Processing, 14(1), 75-89.
  15. Lee, J.W., Kim, J.D., Yun, C.B., Yi, J.H. and Shim, J.M. (2002) Health-monitoring method for bridges under ordinary traffic loadings. Journal of Sound and Vibration, 257(2), 247-264.
  16. Huang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shih, H.H., Zheng, Q., Yen, N.C., Tung, C.C. and Liu, H.H. (1998) The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 454(1971), 903-995, The Royal Society.
  17. Donnelly, D. and Rogers, E. (2009) Time series analysis with the Hilbert–Huang transform. American Journal of Physics, 77(12), 1154-1161.
  18. Yang, J.N., Lei, Y., Pan, S. and Huang, N. (2003) System identification of linear structures based on Hilbert–Huang spectral analysis. Part 1: normal modes. Earthquake Engineering & Structural Dynamics, 32(9), 1443-146.
  19. Wu, S.P., Qin, G.J., Zou, J.H. and Sun, H. (2009) Structure health monitoring based on HHT of vibration response from unknown excitation. Proceedings of the 8th International Symposiumon Test and Measurement, 6(1), 490–493.
  20. Quek, S.T., Tua, P.S. and Wang, Q. (2003) Detecting anomalies in beams and plate based on the Hilbert–Huang transform of real signals. Smart Materials and Structures, 12(3), 447.
  21. Cheraghi, N. and Taheri, F. (2007) A damage index for structural health monitoring based on the empirical mode decomposition. Journal of Mechanics of Materials and Structures, 2(1), 43-61.
  22. Musafere, F., Sadhu, A. and Liu, K. (2016) Time-Varying System Identification Using a Hybrid Blind Source Separation Method. Structural Health Monitoring, Damage Detection & Mechatronics, 7, 99-104, Springer International Publishing.
  23. WenQin, H., Ying, L., AiJun, G. and Yuan, F.G. (2016) Damage Modes Recognition and Hilbert-Huang Transform Analyses of CFRP Laminates Utilizing Acoustic Emission Technique. Applied Composite Materials, 23(2), 155-178.
  24. Ghodrati Amiri, G., Talebzadeh, M., Talebi, M. and Tabrizian, Z. (2016) Damage assessment in connection of moment resistant frames using Hilbert-Huang Transform. Sharif Journal Civil Engineering, 32.2(1.1), 3-11.
  25. Zhang, Y., Lian, J. and Liu, F. (2016) An improved filtering method based on EEMD and wavelet-threshold for modal parameter identification of hydraulic structure. Mechanical Systems and Signal Processing, 68, 316-329.
  26. Khosraviani, M.J. and Ghasemi, M. (2016) Damage localization in beam-like structure under moving load by Empirical Mode Decomposition, Life-Cycle of Engineering Systems, CRC Press, Netherland, 291-296.
  27. Wang, Z.P. and Sun, C.T. (2002) Modeling micro-inertia in heterogeneous materials under dynamic loading. Wave Motion, 36(4), 473-485.
  28. Upadhyay, A.K., Pandey, R. and Shukla, K.K. (2011) Nonlinear dynamic response of laminated composite plates subjected to pulse loading. Communications in Nonlinear Science and Numerical Simulation, 16(11), 4530-4544.
  29. Chen, B. and Xu, Y.L. (2005) A new damage index for detecting sudden stiffness reduction. Special session paper, Proc. 1st International Conference on Structural Condition Assessment, Monitoring and Improvement, Perth, Western Australia, 63-70.
  30. Cheraghi, N. and Taheri, F. (2008) Application of the empirical mode decomposition for system identification and structural health monitoring, 2(1), 61-7.
  31. Zarafshan, A. and Ansari, F. (2014) Damage Index Matrix: A Novel Damage Identification Method Using Hilbert-Huang Transformation. Topics in Modal Analysis, 7, 439-450, Springer New York.
  32. Razi, P. and Taheri, F. (2014) A vibration-based strategy for health monitoring of offshore pipelines’ girth-welds. Sensors, 14(9), 17174-17191.
  33. Michael, B., Sullivan, R.W., Samaratunga, D. and Jha, R. (2015) Vibration Response and Damage Detection of Carbon/Epoxy Beams at Elevated Temperatures using the Hilbert-Huang Transform, (No. 2015-01-2586). SAE Technical Paper.
  34. Reddy, D.M. and Krishna, P. (2015) Innovative method of empirical mode decomposition as spatial tool for structural damage identification. Structural Control and Health Monitoring, 22(2), 365-373.
  35. Quek, S.T., Tua, P.S. and Wang, Q. (2005) Comparison of Hilbert–Huang, wavelet, and Fourier transforms for selected applications. The Hilbert–Huang Transform in Engineering, 213-244.
  36. Huang, W., Shen, Z., Huang, N.E. and Fung, Y.C. (1999) Nonlinear indicial response of complex nonstationary oscillations as pulmonary hypertension responding to step hypoxia. Proceedings of the National Academy of Sciences, 96(5), 1834-1839.
  37. Oliveira, P.M. and Barroso, V. (1998) Instantaneous frequency of mono and multicomponent signals. Time-Frequency and Time-Scale Analysis, Proceedings of the IEEE-SP International Symposium on IEEE, 105-108.
  38. Zonta, D., Lanaro, A. and Zanon, P. (2003) A strain-flexibility-based approach to damage location. In Key Engineering Materials, 245, 87-96, Trans Tech Publications.
  39. Wenzel, H. (2008) Health Monitoring of Bridges. John Wiley & Sons.
  40. Laflamme, S., Cao, L., Chatzi, E. and Ubertini, F. (2016) Damage detection and localization from dense network of strain sensors. Shock and Vibration.
  41. Iatridis, J.C., MacLean, J.J. and Ryan, D. (2005) Mechanical damage to the intervertebral disc annulus fibrosus subjected to tensile loading. Journal of Biomechanics, 38(3), 557-565.
  42. Yazdanpanah, O. and Seyedpoor, S.M. (2013) A crack localization method for beams via an efficient static data based indicator. Computational Methods in Civil Engineering, 4(1), 43-63.
  43. Li, H., Deng, X. and Dai, H. (2007) Structural damage detection using the combination method of EMD and wavelet analysis. Mechanical Systems and Signal Processing, 21(1), 298-306.
  44. Chen, B. and Xu, Y.L. (2007) A new damage index for detecting sudden change of structural stiffness. Structural Engineering and Mechanics, 26(3), 315-341.
  45. Lin, L. and Chu, F. (2012) HHT-based AE characteristics of natural fatigue cracks in rotating shafts. Mechanical Systems and Signal Processing, 26, 181-189.