تعیین فازهای P و S با استفاده از حداکثر هم پوشانی تبدیل موجک گسسته (مطالعه موردی زمین‌لرزه 21 آبان 1396 سرپل ذهاب)

نوع مقاله : Articles

نویسندگان

1 گروه ژئوفیزیک، دانشکده علوم پایه، دانشگاه خلیج‌فارس، بوشهر، ایران

2 گروه مهندسی برق، دانشکده فنی مهندسی، دانشگاه خلیج‌فارس، بوشهر، ایران

چکیده

تشخیص خودکار و برداشت دقیق زمان ورود فازهای لرزه­ای در تعیین مکان رویداد زلزله و تجزیه‌وتحلیل در سیستم­های تشخیص زودهنگام زلزله دارای اهمیت ویژه­ای است. در حال حاضر یکی از فرایندهای متداول برای شناسایی شروع فازهای لرزه­ای روش دستی می­باشد. این کار توسط یک تحلیلگر انجام می­شود که به بررسی لرزه­نگاشت می­پردازد و سپس زمان شروع فازهای P و S را تشخیص می‌دهد. این‌روش بسیار وقت­گیر و تحت تأثیر نظر یا تجربه شخصی کاربر می‌باشد. جهت تجزیه‌وتحلیل داده­های حجیم تولید شده در شبکه­های لرزه­نگاری ارائه یک الگوریتم خودکار و قابل اطمینان ضروری است. از این‌رو در این مطالعه یک الگوریتم خودکار برای تعیین و قرائت زمان رسید فاز P از ترکیب نسخه حداکثر هم­پوشانی تبدیل موجک گسسته[i] و روش تشخیص لبه[ii] و برای تعیین زمان رسید فاز S از ترکیب این نسخه از تبدیل موجک (MODWT) و روش خود برگشتی[iii] ارائه شده است. جهت ارزیابی الگوریتم­های فاز خوانی، زمین‌لرزه 21/08/1396 سرپل ذهاب با بزرگای  مورد مطالعه قرار گرفته است. نتایج حاصل از قرائت موج P با برداشت­های دستی و روش STA/LTA و برداشت­های حاصل از موج S تنها با برداشت­های دستی مقایسه شده­اند. الگوریتم­های فازخوانی خودکار نتایج قابل قبولی را نشان می­دهند.

کلیدواژه‌ها


عنوان مقاله [English]

Determination of P and S Phase Using Maximum Overlap of Discrete Wavelet Transform (A Case Study on 2017 Sarpol-e Zahab Earthquake)

نویسندگان [English]

  • Mohammad Shokri Kaveh 1
  • Raza Mansour 1
  • Ahmad Keshavarz 2
1 Department of Geophysics, Fauclty of Science, Persian Gulf University, Bushehr, Iran
2 Department of Electrical Engineering, Fauclty of Engineering, Persian Gulf University, Bushehr, Iran
چکیده [English]

Automatic seismic phase picking algorithms are one of the current research topics and have special significance in seismic data processing requirements. One of the most fundamental tasks in seismology is the identification arrival time of seismic phases such as the compressional or P-wave, transversal or S-wave, Rayleigh-wave, Love-wave, reflected and refracted wave from boundary layers must be identified. Seismic phase arrival time identification enables scientists to derive important geophysical and seismological information, such as the geotectonic settings, structure of the earth’s interior, seismicity of an area and seismic hazard assessment. Traditionally, these quantities were measured manually by human experts, but as seismic networks have grown worldwide, such tasks have been increasingly taken up by automated algorithms. because seismic network or even a single station operating continuously at high sampling frequency produces an enormous amount of data, processing of such a volume of waveforms manually is very time-consuming and requires considerable manpower. In addition, due to human error, incorrect detection of the phase can affect future studies. Therefore, it is needed to an alternative more efficient, faster, and accurate method that reduces the human, financial and time costs and also decreases the probability of errors. Hence, in recent decades, significant efforts have been made to develop automatic phase picking methods.
 Wavelet transform is a tool in the analysis of nonstationary signals such as the seismic signal. This is due to the ability of the wavelet transform to resolve features at various scales [1]. In particular, there are two types of wavelet transforms, orthogonal as discrete wavelet transform (DWT) and non-orthogonal as maximal overlap discrete wavelet transform (MODWT). DWT is useful in decomposing time series data into an orthogonal set of components with different frequencies. Whereas MODWT is a variant of DWT that can handle any sample size. The smooth and detail coefficients of MODWT multiresolution analysis are associated with zero phase filters and produces a more asymptotically efficient wavelet variance estimator than the DWT [2]. Working in the wavelet domain allows multiresolution analysis of the waveform, and provides the means to distinguish the phase arrival from random or systematic noise. In this work, we take advantage of the wavelet transform properties and define characteristic functions to detect P- and S-wave arrivals. The version of the maximum overlap discrete wavelet transform (MODWT) is used to determine and picking the arrival time of the P and S phases. The methodology of this study is divided into two parts: the first part is about the determination of the P arrival time obtained by processing the stacked envelop of the wavelet transform coefficients. The second part is determining the S arrival time, the automatic S-phase detection algorithm that we present in this paper is a combination of wavelet transform (WT) and AR model. The estimation of arrival time of the S wave is done in two steps. At first, an initial estimation of arrival time is calculated using the MODWT transform. In the next step, the final estimation of the S wave arrival time is calculated using an AR model.
Method is tested on a significant number of Kermanshah cluster earthquakes. The results of automatic phase picker algorithm in this study have been compared with the STA/LTA method to assess the accuracy.

کلیدواژه‌ها [English]

  • Wavelet transform
  • Phase Picking
  • Arrival time
  • Earthquake
  • P and S wave
  • STA/LTA
  1. Billings, S.D., Sambridge, M.S., and Kennett, B.L.N. (1994) Errors in hypocenter location: picking, model, and magnitude dependence. Bulletin of the Seismological Society of America, 84(6), 1978-1990
  2. Engdahl, E.R., van der Hilst, R., and Buland, R. (1998) Global teleseismic earthquake relocation with improved travel times and procedures for depth determination. Bulletin of the Seismological Society of America, 88(3), 722-743.
  3. Horiuchi, S. (2003) Automatic hypocenter location at times of extremely high seismic activity. In Methods and Applications of Signal Processing in Seismic Network Operations (pp. 209-219). Springer, Berlin, Heidelberg.
  4. Bondar, I., and Storchak, D. (2011) Improved location procedures at the International Seismological Centre. Geophysical Journal International, 186(3), 1220-1244.
  5. Hardebeck, J.L., and Shearer, P.M. (2002) A new method for determining first-motion focal mechanisms. Bulletin of the Seismological Society of America, 92(6), 2264-2276.
  6. Zhao, D., Hasegawa, A., and Horiuchi, S. (1992) Tomographic imaging of P and S wave velocity structure beneath northeastern Japan. Journal of Geophysical Research: Solid Earth, 97(B13), 19909-19928.
  7. Oye, V., and Roth, M. (2003) Automated seismic event location for hydrocarbon reservoirs. Computers & Geosciences, 29(7), 851-863.
  8. Zhang, H., Thurber, C., & Rowe, C. (2003) Automatic P-wave arrival detection and picking with multiscale wavelet analysis for single-component recordings. Bulletin of the Seismological Society of America, 93(5), 1904-1912.
  9. Stollnitz, E.J., DeRose, T.D., DeRose, A.D., and Salesin, D.H. (1996) Wavelets for Computer Graphics: Theory and Applications. Morgan Kaufmann.
  10. Kulesh, M., Holschneider, M., and Diallo, M.S. (2008) Geophysical wavelet library: Applications of the continuous wavelet transform to the polarization and dispersion analysis of signals. Computers & Geosciences, 34(12), 1732-1752.
  11. Botella, F., Rosa-Herranz, J., Giner, J.J., Molina, S., and Galiana-Merino, J.J. (2003) A real-time earthquake detector with prefiltering by wavelets. Computers & Geosciences, 29(7), 911-919.
  12. Capilla, C. (2006) Application of the Haar wavelet transform to detect microseismic signal arrivals. Journal of applied geophysics, 59(1), 36-46.
  13. Struzik, Z.R. (2001) Wavelet methods in (financial) time-series processing. Physica A: Statistical Mechanics and its Applications, 296(1-2), 307-319.
  14. Kanasewich, E.R. (1981) Time Sequence Analysis in Geophysics. University of Alberta.
  15. Karamzadeh, N., Doloei, G.J., and Reza, A.M. (2013) Automatic earthquake signal onset picking based on the continuous wavelet transform. IEEE Transactions on Geoscience and Remote Sensing, 51(5), 2666-2674.
  16. Aki, K., and Richards, P.G. (2002) University Science Books. Sausalito, California.
  17. Tibuleac, I.M., and Herrin, E.T. (1999) An automatic method for determination of Lg arrival times using wavelet transforms. Seismological Research Letters, 70(5), 577-595.
  18. Lervik, J.M., Rosten, T., and Ramstad, T.A. (1996, September) Subband seismic data compression: optimization and evaluation. 1996 IEEE Digital Signal Processing Workshop Proceedings (pp. 65-68). IEEE.
  19. Leonard, M. (2000) Comparison of manual and automatic onset time picking. Bulletin of the Seismological Society of America, 90(6), 1384-1390.
  20. Kulesh, M., Diallo, M.S., Holschneider, M., Kurennaya, K., Krüger, F., Ohrnberger, M., and Scherbaum, F. (2007) Polarization analysis in the wavelet domain based on the adaptive covariance method. Geophysical Journal International, 170(2), 667-678.
  21. Mallat, S.G. (1989) A theory for multiresolution signal decomposition: the wavelet representation. IEEE Transactions on Pattern Analysis & Machine Intelligence, 7, 674-693.
  22. Ahmed, A.M.L.S., Sharma, M.L., and Sharma, A. (2007) Wavelet based automatic phase picking algorithm for 3-component broadband seismological data. Journal of Seismology and Earthquake Engineering, 9(1-2), 15-24.
  23. Allen, R.V. (1978) Automatic earthquake recognition and timing from single traces. Bulletin of the Seismological Society of America, 68(5), 1521-1532.
  24. Gendron, P., Ebel, J., and Manolakis, D. (2000) Rapid joint detection and classification with wavelet bases via Bayes theorem. Bulletin of the Seismological Society of America, 90(3), 764-774.
  25. Akram, J., and Eaton, D.W. (2016) A review and appraisal of arrival-time picking methods for downhole microseismic data Arrival-time picking methods. Geophysics, 81(2), KS71-KS91.
  26. Daubechies, I. (1992) Ten Lectures on Wavelets (Vol. 61). Siam.
  27. Addison, P.S. (2005) Wavelet transforms and the ECG: a review. Physiological measurement, 26(5), R155.
  28. Bogiatzis, P., and Ishii, M. (2015) Continuous wavelet decomposition algorithms for automatic detection of compressional‐and shear- wave arrival times. Bulletin of the Seismological Society of America, 105(3), 1628-1641.
  29. Langet, N., Maggi, A., Michelini, A., and Brenguier, F. (2014) Continuous Kurtosis‐Based Migration for Seismic Event Detection and Location, with Application to Piton de la Fournaise Volcano, La ReunionContinuous Kurtosis‐Based Migration for Seismic Event Detection and Location. Bulletin of the Seismological Society of America, 104(1), 229-246.
  30. Mousavi, S.M., Horton, S.P., Langston, C.A., and Samei, B. (2016) Seismic features and automatic discrimination of deep and shallow induced-micro earthquakes using neural network and logistic regression. Geophysical Journal International, 207(1), 29-46.
  31. Canny, J. (1987) ‘A computational approach to edge detection’. In: Readings in computer vision (pp. 184-203). Morgan Kaufmann.
  32. Han, L. (2010) Microseismic monitoring and hypocenter location (Doctoral dissertation, University of Calgary).
  33. Gomberg, J.S., Shedlock, K.M., and Roecker, S.W. (1990) The effect of S-wave arrival times on the accuracy of hypocenter estimation. Bulletin of the Seismological Society of America, 80(6A), 1605-1628.
  34. Ouali, M.A., Ghanai, M., and Chafaa, K. (2018) Upper envelope detection of ECG signals for baseline wander correction: a pilot study. Turkish Journal of Electrical Engineering & Computer Sciences, 26(2), 803-816.
  35. Ohtsu, K., Peng, H., and Kitagawa, G. (2015) ‘Time series analysis through AR modeling’. In: Time Series Modeling for Analysis and Control (pp. 7-56). Springer, Tokyo.
  36. Nissen, E., Ghods, A., Karasözen, E., Elliott, J.R., Barnhart, W.D., Bergman, E.A., Hayes, G.P., Jamal‐Reyhani, M., Nemati, M., Tan, F., and Abdulnaby, W. (2019) The 12 November 2017 Mw 7.3 Ezgeleh‐Sarpol Zahab (Iran) Earthquake and Active Tectonics of the Lurestan Arc. Journal of Geophysical Research: Solid Earth. 124(2), 2124-52.