تأثیر بار انفجار توأم با بار زلزله بر رفتار غیرخطی سازه

نوع مقاله : Articles

نویسندگان

1 گروه مهندسی عمران دانشکده‌ فنی و مهندسی دانشگاه شهرکرد، شهرکرد، ایران

2 گروه مهندسی عمران دانشکده فنی و مهندسی دانشگاه صنعتی سیرجان، سیرجان، ایران

3 گروه مهندسی عمران، دانشکده فنی و مهندسی دانشگاه شهرکرد، شهرکرد، ایران

چکیده

در این مقاله تأثیر هم‌زمان بار انفجار و زلزله بر پاسخ دینامیکی غیرخطی سازه­ بررسی می­‌شود. بدین‌منظور فرض می‌­شود که در حین زلزله، تحریک زمین سبب بروز انفجار در نزدیکی سازه می­‌شود. در ابتدا، فشار ناشی از بار انفجار با دو شدت متفاوت محاسبه و در فواصل مختلف زمانی، هنگامی‌که سازه تحت بار زلزله­‌ی سرپل ذهاب قرار دارد، بر سازه وارد می­‌شود. به‌منظور بررسی تأثیر هم‌زمان اعمال بار زلزله و انفجار بر پاسخ دینامیکی غیرخطی سازه، چهار مدل مختلف انتخاب می‌­شود. در مدل اول، بار انفجار در حین شروع زلزله، در مدل دوم، بار انفجار در ابتدای زمان جنبش نیرومند زمین، در مدل سوم، بار انفجار در زمانی که بیشینه شتاب زلزله رخ می­دهد و در مدل چهارم بار انفجار در انتهای زلزله بر سازه اعمال می­شود. نتایج نشان می‌­دهند در حالتی که زمان وقوع انفجار دقیقاً مصادف با زمان رسیدن بار زلزله به بیشینه شتاب آن بوده است، بیشینه پاسخ سازه رخ‌ داده است. به‌عنوان‌مثال در حالت استفاده از 1500 کیلوگرم ماده­‌ی منفجره در فاصله­‌ی پنج‌متری از سازه به همراه بار زلزله، بیشینه جابه‌جایی سازه 75/64 درصد بیشتر از مقدار مربوط به اعمال بار انفجار به‌تنهایی و همچنین 94/65 درصد بیشتر از مقدار مربوط به اعمال بار زلزله به‌تنهایی می­‌باشد.

کلیدواژه‌ها


عنوان مقاله [English]

The Effect of Blast Load and Earthquake Load on the Nonlinear Behavior of Structures

نویسندگان [English]

  • Reza Kamgar 1
  • Yousef Askari 2
  • Noorollah Majidi 3
1 Department of Civil Engineering, Faculty of Technology and Engineering, Shahrekord University, Shahrekord, Iran
2 Department of Civil Engineering, Faculty of Technology and Engineering, Sirjan University of Technology, Sirjan, Iran
3 Department of Civil Engineering, Faculty of Technology and Engineering, Shahrekord University, Shahrekord, Iran
چکیده [English]

This paper examines the simultaneous effect of blast and earthquake loads on the structural nonlinear dynamic responses of the structure. For this purpose, it is assumed that an explosion occurs near the structure during the earthquake, induced by the ground motion. Initially, the pressure caused by the explosion is calculated with two different intensities (i.e., 1000 and 1500 kg TNT at a distance of five meters from the structure) and is applied to the structure at different time intervals. It is assumed that the structure is excited by the Sarpol-eZahab earthquake. In order to investigate the simultaneous effect of earthquake and blast loads on the nonlinear dynamic responses of the structure, four different scenarios are considered. In the first scenario (State A), the explosion occurs at the beginning time of the earthquake, while in the second state (State B), the explosion happens at the time that the strong ground motion will be started. In the third state (State C), the blast load is applied to the structure at the time that the maximum earthquake acceleration occurs. Finally, in the fourth state (State D), the blast load is applied to the structure at the end time of the earthquake. It is assumed that during an earthquake, or at the beginning and the end of the earthquake, the earth's motion causes an explosion near the structure, which has been observed repeatedly in previous earthquakes and causing significant financial and human casualties. Therefore, to study the simultaneous effect of blast and earthquake loads on the structural nonlinear dynamic responses of the structure, a six-story steel structure modeled in OpenSees software is considered. The frame is modeled nonlinearly, and the Steel 02 material is used to model the frame members. Finally, the acceleration, drift, displacement, and base shear curves of the structure are computed. The results show that with increasing the amount of blast load, the structural response has generally increased. In addition, considering the different scenarios, the maximum response of the structure has occurred in state C. Besides, by increasing the amount of blast load, the maximum response of the structure has not been changed by considering the simultaneous effect of the blast and earthquake loads. In the case that the structure is only excited by the blast load, the results also show that the amount of base shear and base moment is much more than the same values ​​for the state that the structure is only excited by the earthquake load. The values ​​of roof rotation, roof drift, shear, and base moment for the states A and D are similar to these values when the structure is only affected by the blast load. This is due to the short time of the blast load and also the low intensity of the earthquake at the beginning time of the earthquake. Therefore, the earthquake load could not change the response of the structure in these cases. At the end of the earthquake, due to the lack of earthquake load, only the structure was excited by the blast load, and the same results occurred. For example, in the case of using 1500 kg of explosives at a distance of five meters from the structure along with the earthquake load, the maximum displacement of the structure is 64.75% more than the amount of the responses of the structure when it is only excited by the explosive load and also 65.94% more than the amount of the responses of the structure when it is only excited by the earthquake load. These values were increased by 146.12% and 3.44%, respectively, when 1000 kg explosive is considered at a distance of five meters from the structure.

کلیدواژه‌ها [English]

  • Earthquake
  • blast
  • Nonlinear dynamic analysis
  • drift
  • Damage Index
  1. Magnussa, N.M. and Morrill, K. (2008) Fast running model for the residual capacity of steel columns damaged by blast & fragment loads. Proc. 79th Shock and Vib. Sym. Orlando, Florida.
  2. Baker, J.F., Williams, E.L. and Lax, D. (1948) The design of framed buildings against high-explosive bombs. The Cvil Engineer in War: A Symp.Papers on War-Time Eng. Prob., 3, 80-112.
  3. Ngo, T., Mendis, P., Gupta, A. and Ramsay, J. (2007) Blast loading and blast effects on structures–an overview. J. Load. Struct., 131(6), 76-91.
  4. Mills, C. (1987) The design of concrete structure to resist explosions and weapon effects. Proc. 1st Int. Conf. Conc. Haz. Prote., Edinburgh, UK. 61-73.
  5. Shi, Y., Hao, H. and Li, Z.-X. (2008) Numerical derivation of pressure–impulse diagrams for prediction of RC column damage to blast loads. Int. J. Impact Eng., 35(11), 1213-1227.
  6. Luccioni, B., Ambrosini, R. and Danesi, R. (2004) Analysis of building collapse under blast loads. Eng. Struct., 26(1), 63-71.
  7. Hao, H., Wu, C., Li, Z. and Abdullah, A. (2006) Numerical analysis of structural progressive collapse to blast loads. Rans.Tianjin Univ., 31-34.
  8. Hao, H. (2010) A simple numerical approach to predict structure responses to blast loading. The First Int. Conf. Prot. Struct., Manchester, UK.
  9. Li, J. and Hao, H. (2011) A two-step numerical method for efficient analysis of structural response to blast load. Inter. J. Prot. Struct., 2(1), 103-126.
  10. Kamgar, R. and Shams, G.R. (2018) Effect of blast load in nonlinear dynamic response of the buckling restrained braces core. The Sci. J. Pass. Def. Sci. Tech., 9(1), 107-118
  11. Tavakoli, R., Kamgar, R. and Rahgozar, R. (2018) The best location of belt truss system in tall buildings using multiple criteria subjected to blast loading. Civil Eng. J., 4(6), 1338-1353.
  12. Boheiraee, M., Biglari, M. and Ashayeri, I. (2015) Numerical assessment of explicit dynamic analysis of structures in severe loading (case study of three concrete slabs). Bull. Earth. Sci. Eng., 2(3), 2-13 (in Persian).
  13. Amini, M., Shojaee, S. and Rostami, S. (2015) Inelastic dynamic analysis of structures under blast loads using generalized B-Spline method. Asian J. Civil Eng., 16(2), 183-202.
  14. Tavakoli, R., Kamgar, R. and Rahgozar, R. (2019) Seismic performance of outrigger–belt truss system considering soil–structure interaction. Int. J. Adv. Struct. Eng., 11(1), 45-54.
  15. Kamgar, R., Samea, P. and Khatibinia, M. (2018) Optimizing parameters of tuned mass damper subjected to critical earthquake. The Struct. Des. Tall Spec.Build., 27(7), e1460.
  16. Khatibinia, M., Gholami, H. and Kamgar, R. (2018) Optimal design of tuned mass dampers subjected to continuous stationary critical excitation. Int. J. Dyn. Cont., 6(3), 1094-1104.
  17. Kamgar, R., Khatibinia, M. and Khatibinia, M. (2019) Optimization criteria for design of tuned mass dampers including soil–structure interaction effect. Int. J. Opt.Civil Eng., 9(2), 213-232.
  18. Mousavi, S. and Ziyaeifar, M. (2017) study on a contractible viscous dashpot with variable damping constant Bull. Earth. Sci. Eng., 4(1), 55-63 (in Persian).
  19. Habibi, A.R. and Sahabi, E. (2016) Development of a proper load pattern for nonlinear static analysis of composite girder bridges under blast. The Sci. J. Pass. Def. Sci. Tech., 6(4), 235-244.
  20. Khaledy, N., Habibi, A. and Memarzadeh, P. (2018) A Comparison between different techniques for optimum design of steel frames subjected to blast. Latin Amer. J. Sol. Struct., 15(9), 1-26.
  21. Khaledy, N., Habibi, A.R. and Memarzadeh, P. (2019) Minimum weight and drift design of steel moment frames subjected to blast. Int. J. Opt. Civil Eng., 9(1), 39-63.
  22. De Silva, C.W. (2005) Vibration and Shock Handbook. CRC Press, Taylor & Francis Group, New York.
  23. Acosta, P.F. (2011) Overview of UFC 3-340-02 structures to resist the effects of accidental explosions. Struct. Cong. Las Vegas, Nevada. 1454-1469.
  24. Dusenberry, D.O. (2010) Handbook for Blast-Resistant Design of Buildings. John Wiley & Sons, USA.
  25. Macquorn Rankine, W.J. (1870) On the Thermodynamic Theory of Waves of Finite Longitudinal Disturbance. Philos. T. R. SOC. Lon., 160, 277-288.
  26. Lam, N., Mendis, P. and Ngo, T. (2004) Response spectrum solutions for blast loading. Electron. J. Struct. Eng., 4, 28-44.
  27. Kamgar, R. and Rahgozar, R. (2015) Determination of critical excitation in seismic analysis of structures. Earth. Struct., 9(4), 875-891.