ارتقاء عملکرد لرزه‌ای ناحیه اتصال تیر به ستون در ساختمان‌های تیر فولادی- ستون بتنی با استفاده از کامپوزیت‌های سیمانی مهندسی شده

نوع مقاله : Articles

نویسندگان

1 گروه مهندسی عمران، دانشکده مهندسی عمران و نقشه‌برداری، واحد قزوین، دانشگاه آزاد اسلامی، قزوین، ایران

2 پژوهشکده مهندسی سازه، پژوهشگاه بین المللی زلزله‌شناسی و مهندسی زلزله، تهران، ایران

3 گروه مهندسی عمران، دانشکده مهندسی ، دانشگاه خلیج فارس بوشهر، بوشهر، ایران

چکیده

در سال‌های اخیر استفاده از قاب‌های خمشی مرکب متشکل از ستون‌های بتنی و تیر‌های فولادی (RCS) مورد توجه زیادی قرار گرفته است. این سیستم با ترکیب بهینه عناصر سازه‌ای فولادی و بتنی از محاسن هر دو سیستم بهره می‌برد. در این نوع سازه‌ها شناخت رفتار ناحیه اتصال تیر به ستون و مکانیسم شکست در اتصالات اهمیت عمده‌ای دارد. جایگزین نمودن بتن ستون در این اتصالات با بتنی توانمند و انعطاف‌پذیر همچون بتن مهندسی شده (ECC) قادر است عملکرد لرزه‌ای این نوع از سازه‌ها را بهبود دهد. در این تحقیق دو نمونه از این اتصالات با تیر میان‌گذر، در نرم‌افزار المان محدود ABAQUS مدل‌سازی و با نمونه آزمایشگاهی موجود صحت‌سنجی شد. رفتار غیر‌خطی هشت مدل از اتصالات تیر فولادی، ستون بتنی با استفاده از بارگذاری استاتیکی مورد بررسی قرار گرفت. نتایج نشان دادند که عملکرد این اتصالات با محصورشدگی بتن ناحیه اتصال رابطه مستقیم دارد. در ادامه جهت تسهیل جزئیات اتصال و ارتقاء رفتار آن، بتن ECC در دو حالت متفاوت، در گره اتصال و کل ستون، جایگزین بتن معمولی در اتصالات گردید. در پایان پس از مقایسه نتایج عملکرد این نوع از اتصالات، یک مدل پیشنهادی اولیه با بتن ECC ارائه شد که علاوه بر افزایش ظرفیت این اتصالات، رفتار بسیار پایدارتر و مطلوب‌تری از خود نشان می‌دهد.

کلیدواژه‌ها


  1. Griffis, L.G.) 1986 (Some Design Considerations for Composite-Frame Structures. AISC Engineering Journal, 23(2), 59-64.
  2. Sheikh, T.M., Deierlein, G.G., Yura, J.A., Jirsa, J.O. (1989) Beam–column moment connections for composite frames: part 1. Journal of Structural Engineering, ASCE, 115(11), 2858–2876.
  3. Sheikh, T.M., Deierlein, G.G., Yura, J.A., Jirsa, J.O. (1989) Beam–column moment connections for composite frames: part 2. Journal of Structural Engineering, ASCE, 115(11), 2877-2896.
  4. ASCE, (1994) Task Committee on Design Criteria for composite structures in Steel and Concrete. Guidelines for design of joints between steel beam and reinforced concrete columns. Journal of Structural Engineering, ASCE, 120(8), 2330-2357.
  5. Kanno, R. (1993) Strength, Deformation, and Seismic Resistance of Joints between Steel Beams and Reinforced Concrete Columns. Ph.D. Thesis, Cornell University Ithaca, N.Y.
  6. Izaki, Y., Yamanouchi, H., Nishiyama, I., and Fukuchi, Y. (1988) Seismic behavior of grider-to-column connection developed for an advanced mixed structure system. Ninth World Conference on Earthquake Engineering, Tokyo-kyoto, Japan.
  7. Parra-Montesinos, G., Wight, J.K. (2000) Seismic response of exterior RC column-to-steel beam connections. Journal of Structural Engineering, ASCE, 126(10), 1113–21.
  8. Parra-Montesinos, G., Wight, J.K., (2001) Modeling shear behavior of hybrid RCS beam-column connections. Journal of Structural Engineering, ASCE, 127(1), 3–11.
  9. Nishiyama, I., Kuramoto, H., Noguchi, H. (2004) Guidelines: seismic design of composite reinforced concrete and steel buildings. Journal of Structural Engineering, 130(2), 336–342.
  10. Chen, C.H., Lai, W.C, Cordova, P., Deierlein, G.G., and Tsai, K.C. (2004) Pseudo-dynamic test of full-scale RCS frame: Part I – Design, Construction, and Testing. Accepted in NCREE Workshop Proceedings.
  11. Cordova, P. and Deierlein, G.G. (2005) Validation of the seismic performance of composite RCS framed: full-scale testing, analytical modeling and seismic design. Stanford University, Department of Civil and Environmental Engineering, Report No.155.
  12. Alizadeh, S., Attari, N.K.A., and Kazemi, M.T. (2013) The seismic performance of new detailing for RCS connections. Journal of Constructional Steel Research, 91, pp. 76–88.
  13. Azar, B.F., Ghaffarzadeh, H., and Talebian, N. (2013) Seismic performance of composite RCS special moment frames. KSCE Journal of Civil Engineering, 17(2), 450-457.
  14. Mirghaderi, S.R., Eghbali, N.B., and Ahmadi, M.M. (2016) Momentconnection between continuous steel beams and reinforced concrete column under cyclic loading. Journal of Constructional Steel Research, 118, 105–119.
  15. Li, V. C., Qian, Sh. (2005) Suppression of Fracture Failure at Steel/Concrete Interaction Zones by Material Ductility in ECC. Proceeding of CONMAT-5, Vancouver, B.C., August 22-24.
  16. ACI (1998) State of The Art Report on The Fiber Reinforced Concrete, Manual of concrete practice. (ACI-544. 2R-89 / ACI-544.1R-96), Michigan, USA.
  17. Li, V.C., Wang, S., and Wu, C. (2001) Tensile Strain-Hardening Behavior of Polyvinyl Alcohol Engineered Cementitious Composite (PVA-ECC). ACI Materials Journal, 98(6), 483-492.
  18. Li, V.C. (1993) from Micromechanics to Structural Engineering-the Design of Cementitious Composites for Civil Engineering Applications. Journal of Structural Mechanics and Earthquake Engineering, JSCE, 10(2), 37-48.
  19. Fischer, G., Wang, S. and Li, V.C. (2003) Design of Engineered Cementitious Composites (ECC) for Processing and Workability Requirements. In: Seventh International Symposium on Brittle Matrix Composites, pp. 29-36.
  20. Li, V.C. (2007) Engineered Cementitious Composites (ECC) – Material, Structural, and Durability Performance. University of Michigan, Ann Arbor, Michigan, USA.
  21. Dehghani, A., Nateghi-Alahi, F. (2014) Experimental and analytical estimation of mechanical properties of engineered cementitious composites (ECC) with polyvinyl alcohol fiber. Sharif University Journal of Technical and Engineering, 30-2(1.1), 45-57 (in Persian).
  22. Torigoe, S., Horikoshi, T., Ogawa, A., Saito, T. and Hamada, T. (2003) Study on Evaluation Method for PVA Fiber Distributionin Engineered Cementitious Composite. Journal of Advanced Concrete Technology, 1, 265-268.
  23. Battelle (2002) Toward a Sustainable Cement Industry. World Business Council on Sustainable Development (WBCSD), 92 p.
  24. Li, M., Li, V.C., (2013). Rheology, fiber dispersion, and robust properties of engineered cementitious composites. Materials and Structures, 46, 405-420.
  25. Lothenbach, B., Scrivener, K. and Hooton, R.D. (2011) Supplementary Cementitious Materials. Cement and Concrete Research, 41, 1244-1256.
  26. .Nateghi-A, F., Ahmadi, M.H. and Dehghani, A. (2018) Experimental Study on Improved Engineered Cementitious Composite Using Local Material. Materials Sciences and Applications, 9, 315-329.
  27. Li, V.C., Wang, S. and Chynthia, Wu. (2001) Tensile Strain Hardening behavior of polyvinyl alcohol engineered cementitious composite (PVA-ECC). Material Journal, 98(6), 483-492.
  28. Li, V.C., Fischer, G. and Lepech, M.D. (2009) Shotcreting with ECC, Proceedings of CD. Spritzbeton-Tagung, Ed. W. Kusterle, Austria.
  29. Martinie, L., Rossi, P. and Roussel, N. (2010) Rheology of fiber reinforced cementitious materials: classification and prediction. Cement and Concrete Research, 40(2), 226–234.
  30. Horikoshi, T., Ogawa, A., Saito, T., et al. (2006) Properties of Poly vinyl alcohol fiber as reinforcing materials for cementitious composites. In: Fischer G and Li VC (eds) International RILEM workshop on HPFRCC in structural applications. Paris, France: RILEM Publications SARL, pp. 145–153.
  31. Dassault Systemes Simulia Corp. (2014) ABAQUS User's Manual, Version 6.14. Providence, USA.
  32. Alizadeh, S., Attari, N.K.A., and Kazemi, M.T. (2015) Experimental investigation of RCS connections performance using self-consolidated concrete. Journal of Constructional Steel Research, 114, 204–216.
  33. Javadi, A. (2016) Improving seismic performance of steel beam-concrete column joint using Engineered Cementations Composites. M.Sc. Thesis, Islamic Azad University Qazvin Branch (in Persian).
  34. Seismic, A. (2010) Seismic Provisions for Structural Steel Buildings. (ANSI/AISC 341-10): American Institute of Steel Construction, Chicago, IL.