مدل‌سازی عددی اندرکنش ریزشمع ها با گسلش سطحی معکوس

نوع مقاله : Articles

نویسندگان

1 گروه مهندسی عمران، دانشکده فنی و مهندسی، دانشگاه قم، قم، ایران

2 دانشکده زمین شناسی، پردیس علوم، دانشگاه تهران، تهران، ایران

چکیده

وقوع گسیختگی­های ناشی از گسلش سطحی زلزله­های اخیر، ضرورت بررسی اندرکنش گسل- سازه - فونداسیون را در طراحی سازه­های مهندسی و  شریان‌های حیاتی واقع در حریم گسل،  بیش‌ازپیش می­طلبد. در این مقاله، اندرکنش گسلش سطحی حاصل از عملکرد یک گسل معکوس و مجموعه پی شامل؛ فونداسیون سطحی و ریز­شمع ها و همچنین اثر آن بر جابه‌جایی­های افقی و قائم فونداسیون، با استفاده از مدل­سازی عددی مورد بررسی قرارگرفته است. مهم‌ترین فاکتور مورد استفاده در این مطالعه، نسبت فاصله محل برخورد گسلش به زیر پی به عرض پی (S/B) می‌باشد. نتایج نشان می­دهد جابه‌جایی افقی فونداسیون به حضور و موقعیت قرارگیری ریزشمع­ها حساسیت اندکی نشان می­دهد درحالی‌که جابه‌جایی قائم و چرخش فونداسیون  با وجود ریز شمع­ها به موقعیت قرارگیری مجموعه پی نسبت به گسلش حساس بوده و وجود ریز شمع­ها همواره باعث کاهش مقادیر جابه‌جایی قائم فونداسیون می­گردد. نتایج همچنین نشان می­دهد بهترین حالت برای کنترل چرخش فونداسیون، حالت S/B

کلیدواژه‌ها


1.    Anastasopoulos, I. and Gazetas, G. (2007a) Foundation-structure systems over a rupturing normal fault: Part I. Observations after the Kocaeli 1999 earthquake. Bull. Earthquake Engng., 5(3), 253-275.
2.    Anastasopoulos, I. and Gazetas, G. (2007b) Behaviour of structure-foundation systems over a rupturing normal fault: Part II. Analysis of the Kocaeli case histories. Bull. Earthquake Engng., 5(3), 277-301.
3.    Faccioli, E., Anastasopoulos, I., Callerio, A., and Gazetas, G. (2008) Case histories of fault–foundation interaction. Bull. Earthquake Engng., 6(4), 557-583.
4.    Konagai, K. (2005) Data archives of seismic fault-induced damage. Soil Dynamics and Earthquake Engineering, 25(7-10), 559-570, doi:10.1016/j. soildyn.2004.11.009.
5.    Loukidis, D., Bouckovalas, G., and Papadimitriou, A.G. (2009) Analysis of fault rupture propagation through uniform soil cover. Soil Dynam. Earthquake Engng., 29(11-12), 1389-1404.
6.    Anastasopoulos, I., Gazetas, G., Bransby, M.F., Davies, M.C.R., and El Nahas, A. (2007) Fault Rupture Propagation through Sand: Finite-Element Analysis and Validation through Centrifuge Experiments. Journal of Geotechnical and Geoenvironmental Engineering, 133(8), 943-958, doi:10.1061/(ASCE)1090- 0241(2007)133:8(943).
7.    Anastasopoulos, I., Antonakos, G., and Gazetas, G. (2010) Slab foundation subjected to thrust faulting in dry sand: Parametric analysis and simplified design method. Soil Dynamics and Earthquake Engineering, 30(10), 912-924, doi:10.1016/j. soildyn.2010.04.002.
8.    Bransby, M.F., Davies, M.C.R., El Nahas, A., and Nagaoka, S. (2008a) Centrifuge modelling of normal fault-foundation interaction. Bull. Earth-quake Engng., 6(4), 585-605.
9.    Bransby, M.F., Davies, M.C.R., El Nahas, A., and Nagaoka, S. (2008b) Centrifuge modelling of reverse fault-foundation interaction. Bull. Earth-quake Engng., 6(4), 607-628.
10.    Ahmed, W. and Bransby, M.F. (2009) The interaction of shallow foundations with reverse faults. J. Geotech. Geoenviron. Engng., 135(7), 914-924.
11.    Moosavi, S.M., Jafari, M.K., Kamalian, M., and Shafiei, A. (2010) Experimental Investigation of Reverse Fault Rupture - Rigid Shallow Foundation Interaction. Geotechnical mitigation strategies for earthquakesurface fault rupture. International Journal of Civil Engineering, 8(2), 85-98.
12.    Oettle, N.K. and Bray, J.D. (2013b) Geotechnical mitigation strategies for earthquakesurface fault rupture. Journal of Geotechnical and Geoenviron-mental Engineering, 139(11), 1864-1874, doi:10.1061/(ASCE)GT.1943-5606. 0000933.
13.    Fadaee, M., Anastasopoulos, I., Gazetas, G., Jafari, M.K., and Kamalian, M. (2013) Soil bentonite wall protects foundation from thrust faulting: analyses and experiment. Earthquake Engineering and Engineering Vibration, 12(3), 473-486, doi:10. 1007/s11803-013-0187-8.
14.    Fadaee, M., Ezzatyazdi, P., Anastasopoulos, I., and Gazetas, G. (2016) Mitigation of reverse faulting deformation using a soil bentonite wall: Dimensional analysis, parametric study, design implications. Soil Dynamic and Earthquake Engineering, 89, 248-261, https://doi.org/10.1016/ j.soildyn.2016.04.007.
15.    Ashtiani, M., Ghalandarzadeh, A., and Towhata, I. (2016) Centrifuge modeling of shallow embedded foundations subjected to reverse fault rupture. Canadian Geotechnical Journal, 53(3), 505-519, doi:10.1139/cgj-2014-0444.
16.    Ashtiani, M., Ghalandarzadeh, A., Mahdavi, M., and Hedayati, M. (2017) Centrifuge modeling of geotechnical mitigation measures for shallow foundations subjected to reverse faulting. Canadian Geotechnical Journal, 55(8), 1130-1143, https:// doi.org/10.1139/cgj-2017-0093.
17.    Ahmadi, M., Moosavi, M., and Jafari, M.K. (2018) Experimental investigation of reverse fault rupture propagation through cohesive granular soils. Geomechanics for Energy and the Environment, 14, 61-65, https://doi.org/10.1016/j.gete.2018.04. 004.
18.    Garcia, F.E. and Bray, J.D. (2018) Distinct element simulations of earthquake fault rupture through materials of varying density. Soils and Foundations, 58(4), 986-1000, https://doi.org/10. 1016/j.sandf. 2018.05.009.
19.    Mortazavi Zanjani, M. and Soroush, A. (2019) Numerical modelling of fault rupture propagation through layered sands. European Journal of Environmental and Civil Engineering, 23(9), https://doi.org/10.1080/19648189.2017.1344148.
20.    Gazetas, G., Pecker, A., Faccioli, E., Paolucci, R., and Anastasopoulos, I. (2008) Design recommend-ations for fault–foundation interaction. Bull. Earthquake Engneering, 6(4), 677-687.
21.    Anastasopoulos, I., Gazetas, G., Drosos, V., Georgarakos, T., and Kourkoulis, R. (2008) Design of bridges against large tectonic deformation. Earthquake Engng. Engng. Vib., 7(4), 345-368.
22.    Roth, W.H., Sweet, J., and Goodman, R.E. (1982) Numerical and physical modeling of flexural Slip phenomena and potential for fault movement. Rock Mech., 12, 27-46.
23.    Bray, J.D., Seed, R.B., Cluff, L.S., and Seed, H.B. (1994a) Earthquake fault rupture propagation through soil. Journal of Geotechnical Engineering, 120(3), 543-561, doi:10.1061/(ASCE)0733-9410 (1994)120:3(543).
24.    Anastasopoulos, I., Gazetas, G., Bransby, M.F., Davies, M.C.R., and El Nahas, A. (2009) Normal fault rupture interaction with strip foundations. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 135(3), 359-370.
25.    Loli, M., Anastasopoulos, L., Bransby, M.F., Ahmed, W., and Gazetas, G. (2012) Interaction of caisson foundations with a seismically rupturing normal fault: centrifuge testing versus numerical simulation. Geotechnique, 62(1), 29.
26.    Anastasopoulos, I., Gazetas, G., Bransby, M.F., Davies, M.C.R., and El Nahas, A. (2007c) Fault rupture propagation through sand: Finite element analysis and validation through centrifuge experiments. J. Geotech. Geoenviron. Eng., 133(8), 943-958.
27.    Bray, J.D., Seed, R.B., and Seed, H.B. (1994b) Analysis of earthquake fault rupture propagation through cohesive soil. J. Geotech. Engng., 120(3), 560-580.
28.    Loli, M., Anastasopoulos, L., Bransby, M.F., Ahmed, W., and Gazetas, G. (2011) Caisson foundations subjected to reverse fault rupture: centrifuge testing and numerical analysis. Journal of Geotechnical and Geoenvironmental Engineering, 137(10), 914-925, DOI: 10.1061/(ASCE)GT.1943-5606.0000512.
29.    Anastasopoulos, I., Kourkoulis, R., Gazetas, G., and Tsatsis, A. (2013) Interaction of piled foundation with a rupturing normal fault. Geotechnique, 63(12), 1042-1059.
30.    Gazetas, G., Zarzouras, O., Drosos, V., and Anastasopoulos, I. (2015) Bridge-Pier Caisson foundations subjected to normal and thrust faulting: physical experiments versus numerical analysis. Meccanica, 50, 341-354.