بررسی رفتار لرزه‏ای سیستم دوگانه دیوار برشی– قاب خمشی با در نظر گرفتن اندرکنش بین خاک و سازه

نوع مقاله : Articles

نویسندگان

گروه مهندسی عمران، دانشکده فنی و مهندسی، دانشگاه بین‌المللی امام خمینی (ره)، قزوین، ایران

چکیده

در اکثر موارد در طراحی و ارزیابی سازه‏ها، تکیه‏گاه سازه به‌صورت گیردار فرض شده و اثرات اندرکنش خاک و سازه لحاظ نمی‏شود؛ در‌صورتی‌که در نظر گرفتن اثرات اندرکنش خاک و سازه ویژگی‏های دینامیکی سیستم را عوض می‏کند. در این مطالعه رفتار لرزه‏ای سیستم دوگانه دیوار برشی- قاب خمشی با در نظر گرفتن اثرات اندرکنش خاک و سازه بررسی شده است. بدین‌منظور سه سازه با تعداد طبقات 5، 10 و 15 در محیط نرم‌افزار OpenSees مدل‌سازی شده و تحلیل‏های استاتیکی غیرخطی در دو حالت پایه گیردار و پایه انعطاف‏پذیر انجام شده است. نتایج نشان می‏دهد که در نظر گرفتن SSI  باعث افزایش زمان تناوب سازه و کاهش برش طبقات می‏شود. همچنین با در نظر گرفتن اثرات اندرکنش خاک و سازه ظرفیت سازه کوتاه کاهش پیدا می‎کند درحالی‌که با افزایش ارتفاع سازه مقدار ظرفیت آن تفاوت چندانی ندارد. از سوی دیگر در اثر اندرکنش خاک و سازه فونداسیون دیوار برشی حرکت دورانی دارد و این باعث می‏شود که دیوار برشی در آغاز بارگذاری مقدار کمی از بار جانبی را تحمل نماید و هرچقدر بار جانبی بیشتر می‏شود سهم دیوار برشی در تحمل بار جانبی بیشتر ‏شود.

کلیدواژه‌ها


1.    Chopra, A.K. and Yim, S.C.S. (1985) Simplified earthquake analysis of structures with foundation uplift. Journal of Structural Engineering, 111(4), 906-930.
2.    Renzi, S., Madiai, C., and Vannucchi, G. (2013) A simplified empirical method for assessing seismic soil-structure interaction effects on ordinary shear-type buildings. Soil Dynamics and Earthquake Engineering, 55, 100-107.
3.    Toutanji, H.A. (1997) The effect of foundation flexibility on the interaction between shear walls and frames. Engineering Structures, 19(12), 1036-1042.
4.    Marzban, S., Banazadeh, M., and Azarbakht, A. (2014) Seismic performance of reinforced concrete shear wall frames considering soil–foundation–structure interaction. The Structural Design of Tall and Special Buildings, 23(4), 302-318.
5.    Hutchinson, T.C., Raychowdhury, P., and Chang, B. (2006) Nonlinear structure and foundation response during seismic loading: dual lateral load resisting systems. Proceedings of the 8th US National Conference on Earthquake Engineering (No. 320).
6.    Raychowdhury, P. and Singh, P. (2012) Effect of nonlinear soil-structure interaction on seismic response of low-rise SMRF buildings. Earthquake Engineering and Engineering Vibration, 11(4), 541-551.
7.    Tang, Y. and Zhang, J. (2011) Probabilistic seismic demand analysis of a slender RC shear wall considering soil-structure interaction effects. Engineering Structures, 33(1), 218-229.
8.    Li, M., Lu, X., Lu, X., and Ye, L. (2014) Influence of soil–structure interaction on seismic collapse resistance of super-tall buildings. Journal of Rock Mechanics and Geotechnical Engineering, 6(5), 477-485.
9.    Aldaikh, H., Alexander, N.A., Ibraim, E., and Oddbjornsson, O. (2015) Two dimensional numerical and experimental models for the study of structure-soil-structure interaction involving three buildings. Computers and Structures, 150, 79-91.
10.     Ganjavi, B., Hajirasouliha, I., and Bolourchi, A. (2016) Optimum lateral load distribution for seismic design of nonlinear shear-buildings con-sidering soil-structure interaction. Soil Dynamics and Earthquake Engineering, 88, 356-368.
11.     Behnamfar, F. and Banizadeh, M. (2016) Effects of soil–structure interaction on distribution of seismic vulnerability in RC structures. Soil Dynamics and Earthquake Engineering, 80, 73-86.
12.     Lu, Y., Hajirasouliha, I., and Marshall, A.M. (2016) Performance-based seismic design of flexible-base multi-storey buildings considering soil-structure interaction. Engineering Structures, 108, 90-103.
13.     Shakib, H. and Homaei, F. (2017) Probabilistic seismic performance assessment of the soil-structure interaction effect on seismic response of mid-rise setback steel buildings. Bulletin of Earthquake Engineering, 15(7), 2827-2851.
14.     Allotey, N. and El Naggar, M.H. (2008) An investigation into the Winkler modeling of the cyclic response of rigid footings. Soil Dynamics and Earthquake Engineering, 28(1), 44-57.
15.    Harden, C.W. (2005) Numerical Modeling of the Nonlinear Cyclic Response of Shallow Foundations. Pacific Earthquake Engineering Research Center.
16.    Hokmabadi, A.S., Fatahi, B., and Samali, B. (2014) Assessment of soil-pile-structure interaction influencing seismic response of mid-rise buildings sitting on floating pile foundations. Computers and Geotechnics, 55, 172-186.
17.    Raychowdhury, P. (2009) Effect of soil parameter uncertainty on seismic demand of low-rise steel buildings on dense silty sand. Soil Dynamics and Earthquake Engineering, 29(10), 1367-1378.
18.    Raychowdhury, P. and Hutchinson, T.C. (2011) Performance of seismically loaded shearwalls on nonlinear shallow foundations. International Journal for Numerical and Analytical Methods in Geomechanics, 35(7), 846-858.
19.    ASCE (2010) Minimum Design Loads for Buildings and other Structures. ASCE7-10, Reston, VA.
20.    ACI (2014) Building Code Requirements for Structural Concrete (ACI 318-14) and Commentary (ACI 318R-14).
21.    Mazzoni, S., Mckenna, F., Scott, M.H., and Fenves, G.L. (2007) OpenSees Command Language Manual.
22.    Kolozvari, K., Orakcal, K., and Wallace, J.W. (2015) Shear-Flexure Interaction Modeling of reinforced Concrete Structural Walls and Columns under Reversed Cyclic Loading. Pacific Earthquake Engineering Research Center, University of California, Berkeley, PEER Report, (2015/12).
23.    Raychowdhury, P. (2008) Nonlinear Winkler-Based Shallow Foundation Model for Performance Assessment of Seismically Loaded Structures. University of California, San Diego.
24.    Das, B.M. (2010) Geotechnical Engineering Handbook. J. Ross Publishing.
25.    Gazetas, B. (1991) Formulas and charts for impedances of surface and embedded foundations. Journal of Geotechnical Engineering, ASCE 117(9), 1363-1381
26.    FEMA 356 (2000) Washington (DC): Federal Emergent Management Agency.
27.    ASCE 41-13 (2013) Seismic Evaluation and Retrofit of Existing Buildings.
28.    Harden, C.W. and Hutchinson, T.C. (2009) Beam-on-nonlinear-Winkler-foundation modeling of shallow, rocking-dominated footings. Earthquake Spectra, 25(2), 277-300.
29.    NEHRP Consultants Joint Venture (2012) Soil-structure interaction for building structures. Nist Gcr, 12, 917-921.
30.    ASCE 41-06 (2007) Seismic Rehabilitation of Existing Buildings. 41(6), ASCE Publications.