تشخیص آسیب با استفاده از شاخص آسیب انرژی و جابه‌جایی در فاز تحلیلی مدل ASCE

نوع مقاله : Articles

نویسندگان

1 گروه مهندسی عمران، واحد قزوین، دانشگاه آزاد اسلامی، قزوین، ایران

2 پژوهشکده مهندسی سازه، پژوهشگاه بین‌المللی زلزله‌شناسی و مهندسی زلزله، تهران، ایران

چکیده

تشخیص آسیب یکی از ابزارهای مهم پایش سلامت سازه برای ارزیابی بهتر سازه‌ها در طول عمر آنها می‌باشد. بسیاری از مطالعات به ارائه روش‌هایی برای تعیین محل آسیب با استفاده از مدل‌های تحلیلی و آزمایشگاهی مانند مدل‌های شاخص پرداخته‌اند. هدف اصلی این مقاله ارائه روش جدید تشخیص محل آسیب ترکیبی برای شناسایی مکان‌های آسیب با استفاده هم‌زمان از شاخص‌های آسیب‌پذیری انرژی و جابه‌جایی می‌باشد. در بخش اول از طریق شاخص انرژی فرکانس آنی EDI و پاسخ‌های شتاب سازه به تعیین الگوهای آسیب پرداخته شده است. در بخش دوم به‌منظور ارزیابی روش اول و همچنین ارائه روشی سریع برای ارزیابی آسیب از طریق شاخص آسیب جابه‌جایی که متشکل از شاخص قابلیت اعتماد خطا β و شاخص تابع چگالی احتمال نرمال  G(x)با استفاده از پاسخ‌های نسبی جابه‌جایی سازه ASCE ارائه گردیده است. نوآوری این روش استفاده هم‌زمان از پاسخ شتاب- جابه‌جایی در طی یک فرایند است که در ارزیابی سریع الگوهای آسیب مؤثرتر است. برای صحت‌سنجی روش‌های ارائه شده، علاوه بر الگوهای آسیب موجود در مسئله شاخص، آسیب جدید دیگر مورد بررسی قرار گرفته است. تجزیه‌وتحلیل گسترده نشان می‌دهد که روش پیشنهادی، محل دقیق آسیب وارده به سازه را با دقت کافی و سرعت مناسب تعیین می‌نماید.

کلیدواژه‌ها


عنوان مقاله [English]

Damage Detection by Energy and Displacement Damage Index on the Analytical Phase of ASCE Benchmark

نویسندگان [English]

  • Mohammad Javad Khosraviani 1
  • Omid Bahar 2
  • Seyed Hooman Ghasemi 1
1 Department of Civil Engineering, Qazvin Branch, Islamic Azad University, Qazvin, Iran
2 Structural Engineering Research Center, International Institute of Earthquake Engineering and Seismology (IIEES), Tehran, Iran
چکیده [English]

Identification of the modal parameters of the damaged structure by signal processing of vibration based on changes in dynamic properties such as frequency, stiffness, and mode shape of structures. Some of these approaches fail when applied to civill engineering structures, the main reasons are the low sensitivity of the structural response to the damage location, or the low accuracy of structural response obtained by installed sensors. However, due to the rigorous evaluation and low cost of signal processing methods, this method has made a great progress. Signal processing methods have been extensively employed to examine the measured system responses and determine system variations. These methods include Fourier analysis, wavelet transform and Hilbert-Huang transform.
During the last decades, the number of vibration-based damage detection methods has been greatly developed and has influenced much of the research. The purpose of these methods is to determine the resulting changes in the modal characteristics of the structure including its natural frequency, mode shape, and damping ratio. For example, the basis of the Fourier transform method is to determine the structural modal parameters from the random vibration data in the frequency range. However, time-frequency analysis is introduced to overcome the limitations of the Fourier method, the most important of which is not providing a frequency-time range of a signal. The first case of frequency-time analysis was the short-time Fourier transform method based on the Fourier transform of the data divided by the time window function. According to this method, the interaction between time and frequency is difficult due to the existence of the time window function. If the windows are smaller in the time segment, its accuracy increases, and in the frequency domain it becomes less accurate.
Several damage detection methods have been proposed based on the vibration signal of structures. In most of them, a damage index has been described as the difference between damage and undamaged structure. This paper intends to propose a damage detection method based on the amplitude coefficient correlation of damaged and undamaged responses of structures, while a signal decomposes to IMFs and the changes appear in the first IMF. Therefore, every change on the original signal can be revealed on IMFs, since the original signal depends on IMFs. Also, these changes have an effect on the analytical signal and the Hilbert transform. The instantaneous frequency is measured joints on the structure is calculated by the Hilbert transform of the first IMF of response. Then, by introducing the instantaneous frequency energy (EDI), the location of damages are detected. To assess the feasibility and reliability of the proposed method, the ASCE benchmark problem has been used. To consider the robustness of the proposed method, contamination of signals during the data acquisition process is investigated. The ASCE benchmark study is carried out by the International Association (IASC) ASCE Structural Health Monitoring Task Group. The dynamic responses of the structure have been obtained by numerical analysis under random vibration loading. To evaluate the HHT method, it is required to attain the damaged responses of the ASCE benchmark. The first five damage patterns of the ASCE benchmark building is used. Then the damage on the structure is detected with a comparison of damage and undamaged dynamic responses. According to the measured noise levels, dynamic responses to noise values have been contaminated and the results have been evaluated. According to the results, this method can trace the location of the damage by the energy of instantaneous frequency.
Therefore, the locations of damages in different scenarios were located with the EDI index and velocity vector. The results show that the proposed method determined the location of damage with the acceptable accuracy for low and moderate damage in damage scenarios.

کلیدواژه‌ها [English]

  • damage detection
  • Structural health monitoring
  • HHT method
  • Instantaneous Frequency Energy Index
1.    Pierdicca, A., Clementi, F., Maracci, D., Isidori, D., and Lenci, S. (2016) Damage detection in a precast structure subjected to an earthquake: A numerical approach. Engineering Structures, 127, 447-458.
2.    Knitter-Piatkowska, A., Garbowski, T., and Garstecki, A. (2013). Damage detection through wavelet transform and inverse analysis. In VI International Conference on Adaptive Modelling and Simulation (ADMOS 2013), 389-400.
3.    Yang, Z., Wang, L., Wang, H., Ding, Y., and    Dang, X. (2009) Damage detection in composite structures using vibration response under stochastic excitation. Journal of Sound and Vibration, 325(4-5), 755-768.
4.    Huo, L.S., Li, X., Yang, Y.B., and Li, H.N. (2016) Damage detection of structures for ambient loading based on cross correlation function amplitude and SVM. Shock and Vibration, Article ID 3989743, 12p., http://dx.doi.org/10.1155/2016/3989743.
5.    Yan, Y.J., Cheng, L., Wu, Z.Y., and Yam, L.H. (2007) Development in vibration-based structural damage detection technique. Mechanical Systems and Signal Processing, 21(5), 2198-2211.
6.    Melhem, H. and Kim, H. (2003) Damage detection in concrete by Fourier and wavelet analyses. Journal of Engineering Mechanics, 129(5), 571-577.
7.    Whitham, G.B. (2011) Linear and Nonlinear Waves. 42, John Wiley & Sons.
8.    Hera, A. and Hou, Z. (2004) Application of wavelet approach for ASCE structural health monitoring benchmark studies. Journal of Engineering Mechanics, 130(1), 96-104.
9.    Cantero, D. and Basu, B. (2015) Railway infrastructure damage detection using wavelet transformed acceleration response of traversing vehicle. Structural Control and Health Monitoring, 22(1), 62-70.
10.    Tang, J.P., Chiou, D.J., Chen, C.W., Chiang, W.L., Hsu, W.K., Chen, C.Y., and Liu, T.Y. (2011) Retracted: a case study of damage detection in benchmark buildings using a hilbert-huang transform-based method. Journal of Vibration and Control, 17(4), 623-636.
11.    Yang, J.N., Lei, Y., Lin, S., and Huang, N. (2004) Hilbert-Huang based approach for structural damage detection. Journal of Engineering Mechanics, 130(1), 85-95.
12.    Huston, D. (2010) Structural Sensing, Health    Monitoring, and Performance Evaluation. CRC Press.
13.    Piombo, B.A.D., Fasana, A., Marchesiello, S., and Ruzzene, M. (2000) Modelling and identification of the dynamic response of a supported bridge. Mechanical Systems and Signal Processing, 14(1), 75-89.
14.    Lee, J.W., Kim, J.D., Yun, C.B., Yi, J.H., and Shim, J.M. (2002) Health-monitoring method for bridges under ordinary traffic loadings. Journal of Sound and Vibration, 257(2), 247-264.
15.    Khosraviani, M.J., Bahar, O., and Ghasemi, S.H. (2020) Damage detection in continuous deck bridges using statistical cross-correlation function method. Amirkabir Journal of Civil Engineering.
16.    Mallat, S. (1999) A Wavelet Tour of Signal Processing. Elsevier.
17.    Sifuzzaman, M., Islam, M.R., and Ali, M.Z. (2009) Application of wavelet transform and its advantages compared to Fourier transform.
18.    Huang, N.E. (2014) Introduction to the Hilbert–Huang transform and its related mathematical problems. In Hilbert-Huang Transform and its Applications, 1-26.
19.    Huang, N.E., Salvino, L.W., Nieh, Y.Y., Wang, G., and Chen, X. (2013) ‘HHT-based structural health monitoring’. In Health Assessment of Engineered Structures: Bridges, Buildings and other Infra-structures, 203-240.
20.    Yang, J.N., Lei, Y., Pan, S., and Huang, N. (2003) System identification of linear structures based on Hilbert–Huang spectral analysis. Part 1: normal modes. Earthquake Engineering and Structural Dynamics, 32(9), 1443-1467.
21.    WenQin, H., Ying, L., AiJun, G., and Yuan, F.G. (2016) Damage modes recognition and hilbert-huang transform analyses of CFRP laminates utilizing acoustic emission technique. Applied Composite Materials, 23(2), 155-178.
22.    Zhang, Y., Lian, J., and Liu, F. (2016) An improved filtering method based on EEMD and wavelet-threshold for modal parameter identi-fication of hydraulic structure. Mechanical Systems and Signal Processing, 68, 316-329.
23.    Khosraviani, M.J., Bahar, O., and Ghasemi, S.H. (2019) Damage detection in continues bridge deck and ASCE benchmark via instantaneous energy method. In: 8th International Conference of Seismology and Earthquake Engineering (SEE8). Tehran, Iran, IIEES.
24.    Kourehli, S.S. (2017) Damage diagnosis of structures using modal data and static response. Periodica Polytechnica Civil Engineering, 61(1), 135-145.
25.    Papoulis, A. (1977) Signal Analysis. 191, New York: McGraw-Hill.
26.    Zhang, Y., Lian, J., and Liu, F. (2016) An improved filtering method based on EEMD and wavelet-threshold for modal parameter identification of hydraulic structure. Mechanical Systems and Signal Processing, 68, 316-329.
27.    Johnson, E.A., Lam, H.F., Katafygiotis, L.S., and Beck, J.L. (2004) Phase I IASC-ASCE structural health monitoring benchmark problem using simulated data. Journal of Engineering Mechanics, 130(1), 3-15.
28.    Proakis, J.G. and Manolakis, D.G. (1996) Digital Signal Processing. 3, New Jersey, Prentice Hall.
29.    Ogata, K. (1995) Discrete-Time Control Systems. 2, Englewood Cliffs, NJ: Prentice Hall.
30.    Nowak, A.S. and Collins, K.R. (2012) Reliability of Structures. CRC Press.
31.    Ghasemi, S.H. and Nowak, A.S. (2017) Target reliability for bridges with consideration of ultimate limit state. Engineering Structures, 152, 226-237.
32.    Dyke, S.J., Bernal, D., Beck, J.L., and Ventura, C. (2001) An experimental benchmark problem in structural health monitoring. Proceedings of the 3rd International Workshop on Structural Health Monitoring, 488-497, CRC Press.
33.    Johnson, E.A., Lam, H.F., Katafygiotis, L.S., and Beck, J.L. (2001) A benchmark problem for structural health monitoring and damage detection. Structural Control for Civil and Infrastructure Engineering, 317-324.
34.    Dyke, S.J., Caicedo, J.M., and Johnson, E.A. (2000) Monitoring of a benchmark structure for damage identification. Proceedings of the Engineering Mechanics Speciality Conference, Austin, TX.
35.    Lam, H.F., Katafygiotis, L.S., and Mickleborough, N.C. (2004) Application of a statistical model updating approach on phase I of the IASC-ASCE structural health monitoring benchmark study. Journal of Engineering Mechanics, 130(1), 34-48.
36.    Caicedo, J.M., Dyke, S.J., and Johnson, E.A. (2004) Natural excitation technique and eigensystem realization algorithm for phase I of the IASC-ASCE benchmark problem: simulated data. Journal of Engineering Mechanics, 130(1), 49-60.
37.    Wu, J.R. and Li, Q.S. (2006) Structural parameter identification and damage detection for a steel structure using a two-stage finite element model updating method. Journal of Constructional Steel Research, 62(3), 231-239.
38.    Hou, Z. and Hera, A. (2002) Progress of phase II study of the ASCE health monitoring benchmark data using wavelet approach. Proceedings of the 15th ASCE Engineering Mechanics Conference, New York, USA, Columbia University.
39.    Hera, A. and Hou, Z. (2003) Wavelet approach for damage detection using experimental data of ASCE benchmark study. Proceedings of the ASCE Engineering Mechanics Conference.
40.    Casciati, S. (2004) Statistical models comparison for damage detection using the ASCE benchmark. Proc. of Second European Workshop on Structural Health Monitoring, 695-702.
41.    Zimmerman, D.C., Simmermacher, T., and Kaouk, M. (1995, February) Structural damage detection using frequency response functions. Proceedings of Spie the International Society for Optical Engineering, 179-179.
42.    Nair, K.K., Kiremidjian, A.S., and Law, K.H. (2006) Time series-based damage detection and localization algorithm with application to the    ASCE benchmark structure. Journal of Sound       and Vibration, 291(1-2), 349-368.
43.    Than Soe, M. (2013) Vibration-Based Finite Element Model Updating and Structural Damage Identification (Doctoral Dissertation, University of Greenwich).