به‌کارگیری الگوریتم‌های بهینه چند هدفه ژنتیک در مکان‌یابی اسکان موقت بعد از زلزله (مورد مطالعه: منطقه ۵ شهر تبریز)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، گروه جغرافیا و برنامه ریزی شهری، دانشگاه پیام نور، تهران، ایران

2 دانش‌آموخته کارشناسی ارشد GIS، واحد ممقان، دانشگاه آزاد اسلامی، ممقان، ایران

چکیده

مکان‌یابی پناهگاه‌های اسکان موقت یک مسئله پیچیده بهینه‌سازی است. در این پژوهش منطقه ۵ شهر تبریز به دلیل حساسیت مکانی از نظر جغرافیایی و زمین‌شناسی، به‌منظور مکان‌یابی محل استقرار موقت جمعیت‌های آسیب‌دیده از زلزله مورد مطالعه قرار گرفته است. روش تحقیق تحلیلی- توصیفی و از دودسته معیار سازگار و ناسازگار استفاده‌ شده که با به‌کارگیری الگوریتم بهینه‌سازی چندهدفه ژنتیک، به‌عنوان یک روش‌ جدید فرا ابتکاری، در ترکیب با سیستم اطلاعات جغرافیایی مدلی ارائه‌ شده است که هم‌زمان با انتخاب مکان‌های امن، تخصیص جمعیت را انجام و کیفیت مکان‌یابی را بر اساس توابع هدف تعریف‌ شده، مورد بررسی قرار می‌دهد. با ارزیابی 14 معیار طبیعی و انسانی، مکان‌های امن شناسایی‌شده با استفاده از مدل AHP در سه اولویت قرارگرفته، سپس الگوریتم NSGA-II جهت تخلیه بلوک‌های جمعیتی به مکان‌های امن بر اساس تابع کمترین فاصله به‌منظور انتقال سریع و تابع حداقل تعداد مکان‌های امن برای تخصیص بلوک‌های جمعیتی جهت سرویس‌دهی و مدیریت بهینه و نیز تابع هدف میزان نقض بلوک‌های جمعیتی توسط جمعیت آسیب‌دیده در نرم‌افزار متلب مورد تحلیل قرار گرفت. نتایج نشان می‌دهد که همه بلوک‌های جمعیتی به بهترین شکل ممکن به نزدیک‌ترین و حداقل مکان‌های امن تخصیص یافتند. نقاطی از شهر که دارای فضاهای باز کافی و درعین‌حال سازگار با کاربری‌های اطراف می‌باشند، دارای پتانسیل نسبتاً بهتری برای استقرار آسیب‌دیدگان هستند.
 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Application of Optimal Multi-Objective Genetic Algorithms in Locating Temporary Housing after an Earthquake (Case Study: District 5 of Tabriz)

نویسندگان [English]

  • Mahdi Mohammadi Sarindizaj 1
  • Akbar Mohammadi 2
1 Assistant Professor of Geography and Urban Planning, Payame Noor University, Tehran, Iran
2 M.Sc. Graduate , Mamaghan Branch, Islamic Azad University, Mamaghan, Iran
چکیده [English]

Today, the importance of earthquakes in Iran is increasingly understood as the expansion of cities and population concentration in them intensifies. In this regard, the city of Tabriz is one of the settlements that has repeatedly experienced direct exposure to earthquake risk. The earthquake risk zoning of Tabriz, which was carried out by Tehran Padir Company in 2009, has predicted more than 426 thousand human casualties for the earthquake in North Tabriz. The north of Tabriz fault is the most fundamental formation in the area of Tabriz plain, which has been created in terms of its compressive subsidence, Tabriz plain. In addition, since the above fault cuts most of the Quaternary sediments, it has high seismic strength.
Studies show that a lot of construction has been done exactly in the study area (District 5 of Tabriz) and completely on the fault and its area (Figure 2). While according to the regulations of urban planning, construction and creating use in cities, it must be at least 20 km away from the fault area. The zoning of tectonic factors (slope and topography) shows that despite the unfavorable geographical conditions in this part of the city and the lack of observance of construction in the fault area in the last century, uncontrolled population has continued with severe erosion of residential structures. However, despite the warnings of researchers and experts and the awareness of relevant officials about the risk and risk of housing construction, especially high-rise housing and commercial towers in the study area, construction and construction activities are still in full swing. The possibility of seismic potential of severe historical earthquakes with the formation of marginal tissues in the last 50 years and consequently the erosion of these tissues in the study area will lead to a major human catastrophe in this city.
Analytical-descriptive research method and two sets of compatible and incompatible criteria have been used. Using a multi-objective genetic optimization algorithm, as a new meta-innovative method, a model has been proposed in combination with GIS, which simultaneously selects the population and examines the quality of the location based on the defined objective functions.
Suitable locations for temporary housing for earthquake victims are shown in Figure 8 of the Temporary Accommodation Prioritization Map. In general, according to the location of the study area and available data with 14 different natural and human criteria, including the dimensions of safe places, population density, canals, green space, sports, passages, number of floors of buildings, gas transmission lines, training centers, fuel stations, fire stations, medical centers, fault lines and slope, the optimal locations for temporary accommodation of earthquake victims in District 5 of Tabriz were identified. The results of this study show that parts of the city that have sufficient open spaces and at the same time are compatible with the surrounding uses, have a relatively better potential for the location of the injured. In contrast, areas with high population density, relatively high vulnerability, mixed uses and lack of sufficient space and with planning value, have the least possible ability to plan temporary housing for earthquake victims. According to the results of the study, the best places for locating earthquake victims in District 5 of Tabriz, related to open spaces, gardens and barren lands have been evaluated.
This study shows that parts of the city that have sufficient open spaces and at the same time are compatible with the surrounding uses, have a relatively better potential for the location of the injured. Moreover, given that genetic algorithms, especially the optimal multi-objective genetic algorithm, are used to optimize the answers obtained.
Which have several functions and purposes were used In which it demonstrated its efficiency for the rapid transfer of earthquake victims and the allocation of population blocks by defining target functions commensurate with them, to temporary accommodation, Therefore, this research, with its capability, knowledge and information, was able to do better planning for temporary accommodation of citizens in the time after the earthquake.

کلیدواژه‌ها [English]

  • Location
  • Temporary Settlement
  • Earthquake
  • Multipurpose genetic optimization algorithm
  • NSGA-II
  • District 5 of Tabriz
  1. Mohammadi Sarin Dizaj, M., Ahadnejad, M., Marsousi, N., and Asgari, A. (2018) Assessing of resiliency level of urban areas with emphasis on accessibility of influential and vital physical elements against earthquake risk using todim multivariate decision making model (Case Study: Zanjan City). Journal of New Attitudes in Human Geography, 9(4), 89-110 (in Persian).
  2. Asadi Nazari, M. (2005) Planning and locating temporary resettlement camps for earthquake survivors (Case Study: District 1, Tehran). Master of Urban Planning (Urban and Regional Planning) - Department of Urban Planning Art (in Persian).
  3. Moheb-Alizadeh, H., Rasouli, SM., and Tavakkoli-Moghaddam, R. (2011) The use of multi-criteria data envelopment analysis (MCDEA) for location–allocation problems in a fuzzy environment. Journal of Expert Systems with Applications, 38(5), 5687-5695.
  4. Tudes, S. and Yigiter, N.D. (2010) Preparation of land use planning model using GIS based on AHP: case study Adana-Turkey. Bulletin of Engineering Geology and the Environment. 69(2), 235-245.
  5. Zebardast, E. and Mohammadi, A. (2005) Locate relief centers (in earthquakes) using GIS and    multi-criteria evaluation methods AHP. Journal of Honar-Haye Ziba, 21, 5-16 (in Persian).
  6. Iran Statistical Center (2016) Detailed Results of the Census of Population and Housing of the Year.
  7. Motamed, H., Ghafory-Ashtiany, M., and Amini-Hosseini, K. (2012) An earthquake risk-sensitive model for spatial land-use allocation. 15th World Conference on Earthquake Engineering, Lisbon, Portugal.
  8. Islami, A. (2007) Locating rescue and resettlement centers (Case Study: area one of Tehran). Second International Conference on Comprehensive Disaster Management, Tehran (in Persian).
  9. Malczewski, J. (1999) GIS and Multi criteria Decision Analysis (New York: Wiley). 392 pages. ISBN 0-471-32944-
  10. Saadatseresht, M., Mansourian, A., and Taleai, M. (2009) Evacuation planning using mul-tiobjective evolutionary optimization approach European. Journal of Operational Research, 198(1), 305–314.
  11. Srinivas, N. and Deb, K. (1994) Multi objective optimization using nondominated sorting in genetic algorithms. Evolutionary Computation2(3), 221-248.
  12. Holland, J.H. (1975) Adaptation in Natural and Artificial Systems: an Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence. U Michigan Press.
  13. Bolury, S. and Vafaee Nejad, A. (2016) Using genetic algorithm to optimize the problem of locating - multi-criteria allocation in GIS environment (Case Study: fire stations in district 11 Tehran). Urban and Regional Studies and Research. 7(25), 183-202 (in Persian).
  14. Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T. (2002) A fast and elitist multi objective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2), 181-197.
  15. Neema, M.N. and Ohgai, A. (2010) Multi-objective location modeling of urban parks and open spaces: continuous optimization. Computers, Environment and Urban Systems, 34, 361-8.
  16. Liao, S.H., Hsieh, C.L., and Lai, P.J. (2011) An Evolutionary approach for multi-objective optimization of the integrated location-inventory distribution network problem in vendor-managed inventory. Expert Systems with Applications, 38(6), 6768-6776.
  17. Beheshtifar, S. (2014) Design and Implement of a Simultaneous Location-Allocation Model of Different Service Centers Using Evolutionary Algorithms. Ph.D. Thesis. Faculty of Geodesy and Geomatics. K.N. Toosi University of Technology, Tehran, Iran (in Persian).
  18. Masoomi, Z. (2014) Modeling of the Physical Effects of Urban Land Use Changes Using Optimization Algorithms and Spatial Analysis. Ph.D. Thesis. Faculty of Geodesy and Geomatics. K.N. Toosi University of Technology, Tehran, Iran (in Persian).