ارزیابی عملکرد لرزه ای پلهای مصالح بنایی با استفاده از مدل پایه حرکت گهواره ای

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، دانشکده عمران، واحد علوم و تحقیقات تهران، دانشگاه آزاد اسلامی، تهران، ایران

2 دانشیار، پژوهشکده مهندسی سازه، پژوهشگاه بین‌المللی زلزله‌شناسی و مهندسی زلزله، تهران، ایران

چکیده

پل‌های مصالح بنایی در برابر تحریک‌های لرزه‌ای آسیب‌پذیر بوده و عملکرد این سازه‌های ترد بر اثر اعمال بارهای لرزه‌ای نیاز به بررسی دقیق دارد. در این کار تحقیقی یک مدل ساده برای تحلیل دینامیکی این سازه‌ها پیشنهاد می‌شود که بر حرکت گهواره‌ای پایه در جهت عرضی پل مبتنی است. با استفاده از این مدل؛ تحلیل‌های غیرخطی تاریخچه زمانی این‌گونه پل‌ها به‌راحتی و به سهولت می‌تواند انجام گیرد. مدل پیشنهاد شده برای تخمین پاسخ‌های لرزه‌ای پل‌های مصالح بنایی بزرگ که به‌طور هم‌زمان تحت تأثیر تحریکات لرزه‌ای در جهت عرضی و قائم پل قرار گرفته‌اند مورد استفاده قرار می‌گیرد. نتایج حاصل از این پژوهش معلوم می‌نماید که در طی تحلیل لرزه‌ای پل؛ برای تخمین دقیق مقدار لغزش ناشی از برش و نیروی محوری پایه اثر مؤلفه قائم به همراه اثر مؤلفه افقی زلزله باید در نظر گرفته شود. با کاربرد مدل پیشنهادی برای بررسی بهسازی لرزه‌ای پل‌ها مشخص می‌گردد که عملکرد لرزه‌ای پل‌ها بر اثر افزایش میزان شکل‌پذیری عرشه به‌طور قابل‌توجهی بهبود می‌یابد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigation on Seismic Performance of Masonry Arch Bridges Using Rocking Pier Model

نویسندگان [English]

  • Mirhasan Moosavi 1
  • Mansour Ziyaeifar 2
1 Ph.D. Candidate, Department of Civil Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
2 Associate Professor, Department of Structural Engineering Research Center, International Institute of Earthquake Engineering and Seismology (IIEES), Tehran, Iran
چکیده [English]

Masonry bridges are vulnerable structural systems to the ground motion excitation that their survival in case of such incidents has to be studied in detail. In this work, a simplified model for dynamic analysis of masonry arch bridges based on rocking motion of rigid blocks is proposed. Using this model, nonlinear time integration analyses on these bridges can be done with ease and in a short time. Later, acceptance criteria for three cases of un-cracked, fully-operational and collapse-prevention pier sections are developed for such bridges. The accuracy of proposed model in representing the behavior of a rocking system has been verified using the results of experimental studies on rocking motion of a masonry-concrete block reported elsewhere. The results show the suitability of the proposed model in representing rocking motion of rigid blocks. In a case study, the proposed model for masonry arch bridges was used in evaluation of seismic performances of a monumental masonry bridge subjected to both horizontal and vertical seismic actions. The study shows the importance of vertical component of ground motion in determination of internal forces and shear-sliding deformation at the bottom of the bridge’s pier. The proposed model has also shown its ability in defining the effectiveness of a seismic retrofit approach for the same bridge system in a comparative study. According to this investigation, seismic performances of the bridge can be significantly improved in case of adding ductility to its deck assembly. To understand the capacity of bridge system in dealing with earthquake demands, a series of Incremental Dynamic Analyses (IDA) have been carried out on the rocking-pier model of the bridge system using earthquake records. Considering the simplicity of rocking pier model, all the analyses on above-mentioned bridge system have been carried out with ease and in a very short time. According to results, a bridge system subjected to bidirectional seismic actions (vertical and horizontal) has, unexpectedly, more capacity in dealing with seismic demands if it is compared with the same bridge system with unidirectional horizontal seismic excitation. Conversely, the sliding breakdown of the pier in case of bidirectional seismic actions is much higher than that in the case of unidirectional one. Moreover, significant reductions in the level of rotational pitch and shear sliding at rocking joint of the pier is expected in case of adding ductility to the deck of the bridge assembly. As it was expected, ductility in the bridge system also decreases the discrepancy of bridge responses with respect to different earthquake actions, which is attributed to the systems with higher energy dissipation potential.

کلیدواژه‌ها [English]

  • Masonry Bridges
  • Rocking Pier model
  • Seismic Retrofit
  • Vertical Component of Earthquake
  • Macro Block model
1. Pippard, A.J.S. (1936) The Mechanics of the Voussoir Arch. J. ICE., 4, 281-306.
2. Pippard, A.J.S. (1948) The approximate Estimation of Safe Loads on Masonry Bridges. Civil Engineer in War, 1, 365-372.
3. Kooharian, A. (1952) Limit Analysis of Voussoir (Segmental) Concrete Arches. Journal American Concrete Institute, 24, 317-328.
4. Heyman, J. (1966) The Stone Skeleton. International Journal of Solids and Structures, 2, 249-279.
5. Towler, K.D.S. (1985) Application of Non-linear Finite Element Codes to Masonry Arches. Proc. 2nd International Conference on Civil and Structural Engineering Computing.
6. Crisfield, M.A. (1985) Finite Element and Mechanism Methods for the Analysis of Masonry and Brickwork Arches. Transport and Road Research Laboratory.
7. Cundall, P.A. and Strack, O.D.L. (1979) A discrete numerical model for granular assemblies. Geotechnique, 29(1), 47-65.
8. Shi, G.H. (1988) Discontinues Deformation Analysis – a New Numerical Model for the Statics and Dynamics of Block Systems. Ph.D. Thesis, University of California, Berkeley.
9. Owen, D., Peric, D., Petrinic, N., Smokes, C., and James, P. (1998) Finite discrete element models    for assessment and repair of masonry structures.     Proc. Second Int. Arch Bridge Conf. AA. Balkema, 173-180.
10. Melbourne, C., Gilbert, M., and Waggstaff, M. (1997) The collapse behavior of multi span brickwork arch bridges. Structural Engineer, 75, 297-304.
11. Thavalingam, A., Bicanic, N., Robinson, J., and Panniah, D. (2001) Computational Framework for discontinues modeling of masonry arch bridges. Computers and Structures, 79(19), 1821-1830.
12. Azevedo, J.O., Sincraian, G., and Lemos, J. (2000) Seismic behavior of blocky masonry structures. Earthquake Spectra, 16(2), 337-365.
13. Bicanic, N., Stirling, C., and Pearce, C.J. (2002) Discontinues modeling of structural Masonry. WCCM V, Fifth World Conference on Computational Mechanics, Vienna, Austria.
14. Caglayan, B.O., Ozakgul, K., Tezer, O., and Uzgider, E. (2011) Evaluation of a steel railway bridge for dynamic and seismic loads. Journal of Constructional Steel Research. 67(8), 1198-1211.
15. Milani, G. and Lourenco, P.B. (2012) 3D Non-linear behavior of masonry arch bridges. Computers and Structures, 110-111, 133-150.
16. Behnamfar, F. and Afshari, M. (2013) Collapse analysis and strengthening of stone Arch bridges against earthquake. International Journal of Architectural Heritage, 7(1), 1-25.
17. De Felice, G., De Santis, S., Lourenco, P.B., and Mendes, N. (2017) methods and challenges for the seismic assessment of historic masonry structures. International Journal of Architectural Heritage, 11(1), 143-160.
18. Gilbert, M. and Melbourne, C. (1994) Rigid block analysis of masonry structures. Structural Engineer, 72(21), 356-361.
19. Zampieri, P. (2014) Simplified Seismic Vulnerability Assessment of Masonry Arch Bridges. Ph.D. Thesis, University of Trento, Italy.
20. Saghafi, M.H., Safakhah, S., and Kheiroddin, A. (2011) Reviewing behavior of un- reinforced brick-walls using push-over analysis. Journal of Seismology & Earthquake Engineering, 13, 41-52 (in Persian).
21. Zampieri, P., Tecchio, G., Da Porto, F., and Modena, C. (2014) Limit analysis of transverse seismic capacity of multi-span masonry arch bridges. Bull. Earthquake Eng., 13, 1557-1579.
22. Paulay, P. and Priestley, M.J.N. (1992) Seismic Design of Reinforced Concrete and Masonry Buildings. John Wiley & sons, Inc.
23. Lourenco, P.G., Rots, J., and Blaauwendraad, J. (1998) Continuum Model for Masonry: Parameter Estimation and Validation. Journal of Structural Engineering, 124,642-652.
24. Costa, A.A., Arede, A., Penna, A., and Costa, A. (2013) Free rocking response of a regular stone masonry wall with equivalent block approach: experimental and analytical evaluation. Earthquake Engng. Struct. Dyn., 42, 2297-2319.
25. Yim, C.S., Chopra, A.K., and Penzien, J. (1980) Rocking response of rigid blocks to earthquakes. Earthquake Engineering and Structural Dynamics, 8, 565-587.
26. Abdsharifabadi, H. (1991) Earthquake and Common Buildings, Re. Rep. No.55. Building and Housing research Center, Iran (in Persian).
27. Costa, A.A., Arede, A., Penna, A., and Costa, A. (2012) Experimental Evaluation of the coefficient of restitution of rocking stone masonry façades. 15th International Brick and Block Masonry Conference, Brazil.
28. D'Ambrisi, A., Focacci, F., and Caporale, A. (2013) Strengthening of masonry unreinforced concrete railway bridges with PBO-FRCM materials. Composite Structures, 102, 193-204.