طبقه‌بندی ساختگاه به کمک پردازش تصویر و شبکه‌های عصبی و بر اساس طیف‌های پاسخ H/V

نوع مقاله : یادداشت پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد ژئوتکنیک، دانشگاه بجنورد، بجنورد، ایران

2 استادیار، گروه عمران، دانشکده فنی و مهندسی دانشگاه بجنورد، بجنورد، ایران

چکیده

به‌منظور برآورد خطر لرزه‌ای یک ساختگاه مشخص، طبقه‌بندی آن ساختگاه از اهمیت ویژه‌ای برخوردار است. از سوی دیگر به‌منظور تفسیر و تحلیل داده‌های ثبت شده از حرکت زمین در مناطق مختلف جهان، شناخت شرایط ساختگاه در ایستگاه‌های لرزه‌نگاری ضروری می‌باشد. در برخی از کشورها از جمله ایران اطلاعات کافی از وضعیت ژئوتکنیکی و زمین‌شناسی در بسیاری از ایستگاه‌های لرزه‌نگاری وجود ندارد. از این‌رو شرایط ساختگاه در این مناطق در دسترس نمی‌باشد. این پژوهش به رویکردی جدید و کارآمد در طبقه‌بندی ساختگاه بر اساس داده‌های ثبت شده از شبکه لرزه‌نگاری و با استفاده از تکنیک‌های پردازش تصویر و شبکه‌های عصبی و به‌کارگیری مجموعه‌ی مرجع از منحنی‌های نسبت طیفی 5 درصد میرا شده مؤلفه افقی به عمودی (H/V) برای چهار نوع ساختگاه می‌پردازد. این مجموعه‌ی مرجع که شامل چهار منحنی H/V برای چهار نوع ساختگاه مختلف با نام‌های سنگ، خاک متراکم، خاک متوسط و خاک نرم و با طبقه‌بندی I، II، III و IV می‌باشد، از مطالعه ژائو و همکاران [1] انتخاب شده است. در این پژوهش از دو نوع تابع شعاعی پایه (RBF) به نام‌های «شبکه عصبی احتمالی (PNN)» و «شبکه عصبی رگرسیون عمومی (GRNN)» و همچنین «شبکه عصبی کانولوشنی (CNN)» استفاده شده است. با توجه به نتایج به‌دست‌آمده مشاهده می‌شود که شبکه‌های PNN، GRNN و CNN در پیش‌بینی درست شرایط ساختگاه با استفاده از داده‌های زلزله در بهترین حالت به‌ترتیب در 73، 71 و 81 درصد ایستگاه‌ها موفق عمل کرده‌اند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Site Classification Based on H/V Response Spectra, Using Image Processing and Neural Networks

نویسندگان [English]

  • Mohammad Manoochehri Kian 1
  • Mohammad Khandan Bakavoli 2
1 M.Sc. Graduate of Geotechnics, University of Bojnord, Bojnord, Iran
2 Assistant Professor, Civil Engineering Department, University of Bojnord, Bojnord, Iran
چکیده [English]

In order to estimate the seismic hazard of a specific site, the classification of that site is of particular importance.
On the other hand, in order to interpret and analyze the ground motion data in different parts of the world, it is
necessary to know the site conditions in seismic stations. In some countries, including Iran, there is insufficient
information on the geotechnical and geological status of many seismic stations. The conventional methods to
characterize the site are based on shear wave velocity measurement such as SCPT measurement, downhole testing,
and seismic refraction. These methods have some limitations such as costs, maximum depth, execution problems,
etc. This research is a new and efficient approach in site classification using the data recorded from the seismic
networks, image processing techniques, neural networks and set of 5% damping spectral ratio reference curves of
horizontal to vertical component (H/V) for the four different site classifications. These reference sets, that include
four separate H/V curves for four different site conditions labelled as rock, dense soil, medium soil and soft soil and
classified as site I, II, III and IV, have been selected from the study of Zhao et al. [1]. The reference curves are based
on K-net seismic network data. The adopted soil classifications are based on Japan Road Association
recommendations. For the periods of interest, which were not presented in the Zhao et al. [1], the curves were
interpolated to come up with the values at the missing periods.
In this research, two types of basic radial functions (RBF) are called "probabilistic neural network (PNN)" and
"general regression neural network (GRNN)", as well as "convolutional neural network (CNN)" have been used. For
neural network input, the data from 182 seismic stations have been incorporated. The site condition at the location of
each station has been fully characterized. The horizontal to vertical spectral ratio for each recorded seismic event
was calculated. The ratio for each data was smoothed using the moving average function. Then, the smoothed H/V
ratio was normalized to match the sigmoid transfer function upper and lower range, which could minimize the
network training time. For the CNN network, the input H/V spectral ratio images were first unified using the exact
dimension of 150×300 pixels and then compared to the reference H/V spectral ratio using image processing
techniques implemented in MATLAB software.
To verify the proposed technique, H/V spectral ratio was calculated for all events recorded at all 182 stations and
then used as input for training the PNN, GRNN and CNN networks and then compared to the reference curves
proposed by Zhao et al. [1]. Two normalization methods were incorporated; in the first method, all the H/V spectral
ratios normalized to the maximum amplitude, and the second was to normalize the maximum to one and minimum
to zero. The results confirmed that the second normalization method could produce more accurate results due to a
better matching the sigmoid function.
According to the obtained results incorporating the second method of normalization and all 790 ground motion
data, which were recorded at 182 different stations., the PNN, GRNN and CNN networks have succeeded in
accurately predicting the site conditions in 73%, 71% and 81% of the stations, respectively. The results could prove
the applicability of the proposed approach, using neural networks, in site characterization.
References
1. Zhao, J.X., Irikura, K., Zhang, J., Fukushima, Y., Somerville, P.G., Asano, A., Ohno, Y., Oouchi, T., Takahashi, T. and Ogawa, H. (2006) An Empirical site-classification method for strong-motion stations in japan using H/V
response spectral ratio. Bulletin of the Seismological Society of America, 96, 914-25.

کلیدواژه‌ها [English]

  • Site Effect
  • Neural network
  • image processing
  • Site Classification
  1. Zhao, J.X., Irikura, K., Zhang, J., Fukushima, Y., Somerville, P.G., Asano, A., Ohno, Y., Oouchi, T., Takahashi, T., and Ogawa, H. (2006) An empirical site-classification method for strong-motion stations in japan using h/v response spectral ratio. Bulletin of the Seismological Society of America, 96, 914-925.
  2. Stone, W.C. and Yokel, F.Y. (1987) Engineering Aspects of the September 19, 1985 of the September 19, 1985. NBS Building Science Series, 165, National Bureau of Standards, Washington, D.C.
  3. Yegian, M.K., Ghahraman, V.G., and Gazetas, G. (1994) 1988 Armenia Earthquake. I: seismological, geotechnical, and structural overview. Journal of Geotechnical Engineering, 120(1), 1-20.
  4. Seed, R., Dickenson, S.E., Riemer, M.F., Bray, J.D., Sitar, N., Mitchell, J.K., Idriss, I.M., Kayen, R.E., Kropp, A., Harder, L.F., and Power, M.S. (1990) Preliminary report on the principal geotechnical aspects of the October 17, 1989    Loma Prieta Earthquake. Earthquake Engineering Research Center, University of California, California.
  5. Taskin, B., Atila, S., Tugsal, U.M., and Erken, A. (2013) The aftermath of 2011 Van earthquakes: evaluation of strong motion, geotechnical and structural issues. Bulletin of Earthquake Engineering, 11(1), 285-312.
  6. Borcherdt, R.D. (1994) Estimates of site‐dependent response spectra for design (methodology and justification). Earthquake Engineering Research Institute, 10(4), 617-53.
  7. Borcherdt, R.D. (1970) Effects of local geology on ground motion near San Francisco Bay. Bulletin of the Seismological Society of America, 60(1), 29-61.
  8. Nakamura, Y. (1989) A Method for Dynamic Characteristics Estimation of Subsurface Using Microtremor on the Ground Surface. Quarterly Report of RTRI (Railway Technical Research Institute), Japan.
  9. Langston, C.A. (1979) Structure under Mount Rainier, Washington, inferred from teleseismic body waves. Journal of Geophysical Research: Solid Earth, 84(B9), 4749-4762.
  10. Field, E.H. and Jacob, K.H. (1995) A comparison and test of various site-response estimation techniques, including three that are not reference-site dependent. Bulletin of the Seismological Society of America, 85(4), 1127-1143.
  11. Mathworks (2017) Neural Network Toolbox: User's Guide (R2017b).
  12. Specht, D.F. (1991) A General Regression Neural Network. IEEE Transactions on Neural Networks, 2, 568-76.
  13. Michael, A.A. (1997) The Handbook of Brain Theory and Neural Networks, London: The MIT Press.
  14. Lawrence, S., Giles, C.L., Tsoi, A.C., and Back, A.D. (1997) Face Recognition: A Convolutional Neural-Network Approach. IEEE Transactions on Neural Networks, 8, 98-113.
  15. Fasel, B. (2002) Robust face analysis using convolutional neural networks," in IEEE Comput. Soc 16th International Conference on Pattern Recognition.
  16. BSSC (2000) The 2000 NEHRP Recommended Provisions for New Buildings and Other Structures, Part I (Provisions) and Part II (Commentary), Washington, D.C.
  17. Japan Road Association (1980) Specifications for Highway Bridges Part V, Seismic Design. Maruzen Co., LTD.
  18. Paz, M. (2003) Structural Dynamics: Theory and Computation, Norwell. Kluwer Academic Publishers.