تعیین پاسخ لرزه ای پل صدر تحت اثر اندرکنش خاک-سازه و تحریک غیر یکنواخت

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه مهندسی عمران، دانشگاه خوارزمی، تهران، ایران

2 استاد، گروه مهندسی عمران، دانشگاه خوارزمی، تهران، ایران

3 دانشیار، پژوهشکده مهندسی ژئوتکنیک، پژوهشگاه بین المللی زلزله شناسی و مهندسی زلزله، تهران، ایران

چکیده

چکیده

در سازه‌های عظیم و طویل مانند پل‌ها فرض گیرداری پی و تحریک یکنواخت لرزه‌ای در تمام تکیه گاه های سازه موجب انحراف پاسخ‌ها از واقعیت می‌شود. هدف از انجام این مطالعه ارزیابی پاسخ لرزه ای یک پل طویل تحت اثر اندرکنش خاک- سازه و تحریک غیر یکنواخت می باشد که در آن یک مدل تحلیلی جدید جهت مدل سازی اثر اندرکنش خاک-سازه ارائه شده است. همچنین تحریکات غیر یکنواخت در محل تکیه گاه های مختلف محدوده ی مطالعه ی پل صدر به عنوان یک پل طویل شبیه سازی شد و بر مدل اعمال گردید. مقایسه پاسخ های دینامیکی سازه در شرایط اندرکنش و تحریک غیر یکنواخت با حالت پایه گیردار و تحریک یکنواخت حاکی از تأثیر بسزای هر دو عامل اندرکنش و تحریک غیر یکنواخت در تحلیل و طراحی پل های طویل بوده و نشان داد که عدم در نظرگیری این عوامل ممکن است منجر به پاسخ های دور از واقعیت شود. نتایج بیانگر این مطلب است که در نظر گیری اثر اندرکنش و تحریک غیر یکنواخت می تواند تا 275 و 176 درصد باعث افزایش تغییر مکان نسبی عرشه در راستای طولی و عرضی شود. همچنین لحاظ نمودن اثر اندرکنش به طور میانگین کاهش 67 و 75 درصدی برش و لنگر پایه و در نظر گیری تحریک غیر یکنواخت افزایش 37 و 29 درصدی آن مقادیر را نشان می‌دهد.

کلیدواژه‌ها

موضوعات


  1. Road, Housing and Urban Development Research Center (1393) Iranian Code of Practice for Seismic Resistant Design of Building, Standard NO. 2800 (4th Edition). Permanent committee for revising the Iranian code of practice for seismic resistant design of buildings, Tehran (in Persian).
  2. Finn, W.L.A. (2005) Study of piles during earthquakes: issues of design and analysis. Bulletin of Earthquake Engineering, 3(2), 141-234.
  3. Elgamal, A., Jun, L., Yang, Y.Z., and Conte, J.P. (2008) Three-dimensional seismic response of Humboldt Bay bridge-foundation-ground system. Journal of Structural Engineering, ASCE, 134(7), 1165-1176.
  4. Thavaraj, T., Finn, W.D.L., and Wu, G. (2010) Seismic response analysis of pile foundations. Geotechnical and Geological Engineering, 28(3), 275-286.
  5. Lu, J., Elgamal, A., Linjun, Y., Kincho, H.L., and Conte, J.P. (2011) Large-scale numerical modeling in geotechnical earthquake engineering. Interna-tional Journal of Geomechanics, 11(6), 490-503.
  6. Rahmani, A., Taiebat, M., and Finn, W.D.L (2014) Nonlinear dynamic analysis of Meloland Road Overpass using three-dimensional continuum modeling approach. Soil Dynamics and Earthquake Engineering, 57, 121-132.
  7. Carbonari, S., Morici, M., Dezi, F., Gara, F., and Leoni, G. (2017) Soil-structure interaction effects in single bridge piers founded on inclined pile groups. Soil Dynamics and Earthquake Engineering, 92, 52-67.
  8. Rahmani, A., Taiebat, M., Finn, W.D.L., and Ventura, C.E. (2016) Evaluation of substructuring method for seismic soil-structure interaction analysis of bridges. Soil Dynamics and Earthquake Engineering, 90, 112-127.
  9. Ghotbi, A.R. (2016) Response sensitivity analyses of skewed bridges with and without considering soil-structure interaction. Structures, 5, 219-232.
  10. Pacheco, G. (2006) Dynamic Lateral Response of Single Piles Considering Soil Inertia Contribution. Ph.D. Dissertation, University of Puerto Rico, Puerto Rico.
  11. Shirgir, V., Ghanbari, A., and Shahrouzi, M. (2016) Natural frequency of single pier bridges considering soil-structure interaction. Journal of Earthquake Engineering, 20, 611-632.
  12. Davoodi, M., Razmkhah, A., and Javaheri, A. (2012) Considering the effects of SVEGM on dynamic stress-strain distribution of embankment dams. Civil Engineering Infrastructures Journal, 45, 529-541.
  13. Davoodi, M., Jafari, M.K., and Sadreddini, A. (2013) Effect of multi-support excitation on seismic response of embankment dams. International Journal of Civil Engineering, 11(1), 19-28.
  14. Nazmy, A.S. and Abdel-Ghaffar, A.M. (1992) Effects of ground motion spatial variability on the response of cable-stayed bridges. Earthquake Engineering and Structural Dynamics, 21, 1-20.
  15. Wang, J., Carr, A.J., Cooke, N., and Moss, P.J. (2009) The response of a 344 m long bridge to non-uniform earthquake ground motions. Engineering Structures, 31, 2554-2567.
  16. Karmakar, D., Ray-Chaudhuri, S., and Shinozuka, M. (2012) Seismic response evaluation of retrofitted Vincent Thomas Bridge under spatially variable ground motions. Soil Dynamics and Earthquake Engineering, 42, 119-127.
  17. Falamarz- Sheikhabadi, M.R. and Zerva, A. (2016) Analytical seismic assessment of a tall long- span curved reinforced- concrete bridge. Part II: Structural response. Journal of Earthquake Engineering, 20, 1-30.
  18. Adanur, S., Altunisik, A.C., Soyluk, K., and Bayraktar, A. (2016) Multiple-support seismic response of Bosporus Suspension Bridge for various random vibration method. Case Studies in Structural Engineering, 5, 54-67.
  19. Bi, K., Hao, H., and Chouw, N. (2011) Influence of ground motion spatial variation, site condition and SSI on the required separation distances of bridge structures to avoid seismic pounding. Earthquake Engineering and Structural Dynamics, 40, 1027-1043.
  20. Soyluk, K. and Sicacik, E.A. (2012) Soil-structure interaction analysis of cable-stayed bridges for spatially varying ground motion components. Soil Dynamics and Earthquake Engineering, 35, 80-90.
  21. Sextos, A.G, Pitilakis, K.D., and Kappos, A.J. (2003) Inelastic dynamic analysis of RC bridges accounting for spatial variability of ground motion, site effects and soil-structure interaction phenomena. Part 1: methodology and analytical tools. Earthquake Engineering and Structural Dynamics, 32, 607-627.
  22. Sextos, A. G, Pitilakis, K. D, and Kappos, A.J. (2003) Inelastic dynamic analysis of RC bridges accounting for spatial variability of ground motion, site effects and soil-structure interaction phenomena. Part 2: parametric study. Earthquake Engineering and Structural Dynamics, 32, 629-652.
  23. Deputy of Technical and Development Affairs - Tehran Municipality (1391) Technical Report of the Sadr Bridge (Internal Report).
  24. API (2007) Recommended practice for planning, designing, and constructing fixed offshore platforms. American Petroleum Institute. Section 6.8 Soil reaction for Laterally Loaded Piles. USA.
  25. AASHTO (2012) LRFD Bridge Design Specifications. American Association of State Highway and Transportation Officials, Washington DC, USA.
  26. Washington State Department of Transportation (1997) A division of Kleinfelder, Inc. Design Manual. Foundation stiffnesses under seismic loading, USA.
  27. Dassault Systems Simulia Corp (2011) Version 6.11 User's Manual. Providence, RI, USA.
  28. Battini, J.C. (2006) Structural Dynamics. Royal Institute of Technology (KTH), Stockholm, Sweden.
  29. Gazetas, G. (1991) 'Foundation Vibrations'. In: Fang H., editor, Foundation Engineering Handbook (2nd Edition). Van Nostrand Reinholds. Ch.15, 553-593.
  30. Zhang, J., Markis, N. (2002) Seismic response analysis of highway overcrossings including soil-structure interaction. Earthquake Engineering and Structural Dynamics, 31(11), 1967-1991.
  31. Lee, S., Feng, M.Q., Kwon, S.J., and Hong S.H. (2011) Equivalent modal damping of short-span bridges subjected to strong motion. Journal of Bridge Engineering, 16(2), 316-323.
  32. Werner, S. (1993) Study of Caltrans' Seismic Evaluation Procedures for Short Bridge Overcrossing Structures. Technical Report 59Q122, California Department of Transportation Division of Structures, Sacramento, California.
  33. Datta, T.K. (2010) Seismic Analysis of Structures. John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop, 02-01, Singapore.
  34. Hoseini, S.S., Ghanbari, A., and Davoodi, M. (2017) Evaluation of long bridges dynamic responses under the effect of spatially varying earthquake ground motion. Bridge Structures, 13, 25-42.
  35. Center for Engineering Strong Motion Data ⟨http://www.strongmotioncenter.org, (Accessed in October 2013) (Note: search for station no. 01336).
  36. Shamsi, M. and Ghanbari, A. (2020) Seismic Retrofit of Monorail Bridges Considering Soil–Pile–Bridge–Train Interaction. Bridge Eng., 25(10), 04020075.