مروری بر روند توسعه محفظه‌های‏ برشی لایه‌ای در مدل‌سازی فیزیکی مسائل ژئوتکنیک لرزه‌‏ای

نوع مقاله : مقاله مروری

نویسندگان

1 دکتری مهندسی ژئوتکنیک، گروه مهندسی عمران، دانشکده مهندسی، دانشگاه کردستان، سنندج، ایران

2 استادیار، گروه مهندسی عمران، دانشکده مهندسی، دانشگاه کردستان، سنندج، ایران

چکیده

مد‏ل‏ سازی فیزیکی به‌عنوان یکی از روش‏ های آزمایشگاهی در مهندسی ژئوتکنیک کاربرد گسترده‏ ای دارد. از این‌ روش برای مطالعه رفتار لرزه‏ ای زمین‏ های مسطح و شیب‏دار، خاک‏های مسئله ‏دار مانند رس‏ های نرم و رمبنده، خاکریزها، دیوارهای حائل، خاک‏ های مستعد روانگرایی و نیز سیستم‏ های خاک- سازه نظیر پی‏ های سطحی و عمیق و روش‏ های بهسازی آن استفاده می‏ شود. در مدل‏ سازی فیزیکی سیستم‏ های خاک- سازه که در دو حالت  g1 در محیط گرانشی زمین و یا Ng با استفاده از دستگاه سانتریفیوژ بر روی میز لرزان انجام می‏ شود، نمی‏ توان خاک را به‌صورت مستقیم بر روی عرشه میز قرار داد. از این‌رو، به یک محفظه برای نگهداری مدل خاک- سازه بر روی میز لرزان به‌منظور بازتولید تنش‏ های محصور کننده‏ ستون خاک در واقعیت و نیز شبیه‏ سازی تنش‏ های ایجاد شده در حین اعمال تحریک دینامیکی نیاز است. با ساخت اولین محفظه مدل در دهه 1950 میلادی، مد‏ل‏ سازی فیزیکی در مهندسی ژئوتکنیک وارد عصر نوینی شد. از آن زمان، محققین بسیاری سعی در ساخت­ و توسعه محفظه ‏های مدل با توجه به اهداف پژوهشی خود کردند و بدین‌ترتیب انواع محفظه‏ ها با اهداف و ویژگی‏ های متنوع توسعه یافتند. در پژوهش حاضر که به‌صورت یک مطالعه مروری است، ابتدا تاریخچه مدل‏ سازی فیزیکی در مهندسی ژئوتکنیک به‌طور مختصر بیان شده است. سپس روند توسعه انواع محفظه‏ های مدل و شرایط مرزی ایده‏آل برای شبیه ‏سازی ستون خاک در واقعیت و شرایط مرزی محفظه برشی لایه ‏ای به‌طور جامع تشریح شده است. در میان محفظه ‏های ساخته شده در ادبیات فنی، محفظه برشی لایه‏ ای به دلیل دقت مناسب در مدل ‏سازی شرایط مرزی ستون خاک، توانایی شبیه‌سازی شرایط میدان آزاد خاک و ایجاد امکان حرکت آزادانه ستون خاک بدون اعمال اصطکاک قابل توجه، به پرکاربردترین نوع محفظه در چند دهه اخیر تبدیل شده است. محفظه‏ های برشی لایه‏ ای ساخته شده در مراکز معتبر پژوهشی داخلی که در ادبیات فنی موجود هستند به همراه مشخصات اصلی از جمله ویژگی‏ های مدل‏ سازی، جزئیات طراحی و شرایط مرزی به‌تفصیل در این تحقیق بررسی شده است.

کلیدواژه‌ها

موضوعات


  1. Fardis, M.N. and Rakicevic, Z.T. (Eds.) (2011) Role of Seismic Testing Facilities in Performance-Based Earthquake Engineering: SERIES Workshop, 22, Springer Science and Business Media. ISBN: 978-94-007-1977-4.
  2. Iai, S. (1989) Similitude for shaking table tests on soil-structure-fluid model in 1g gravitational field. Soils and Foundations, 29(1), 105-118, https://doi. org/10.3208/sandf1972.29.15.
  3. Meymand, P.J. (1998) Shaking Table Scale Model Tests of Nonlinear Soil-Pile-Super-Structure Interaction in Soft Clay. D. Dissertation, University of California Berkeley, California, USA.
  4. Iai, S., Tobita, T., and Nakahara, T. (2005) Generalised scaling relations for dynamic centrifuge tests. Géotechnique, 55(5), 355-362, https://doi.org/ 10.1680/geot.2005.55.5.355.
  5. Wartman, J. (2006) Geotechnical physical modeling for education: Learning theory approach. Journal of Professional Issues in Engineering Education and Practice132(4), 288-296, https://doi.org/10.1061/ (ASCE)1052-3928 (2006)132: 4(288).
  6. Addis B., Kurrer K.E., and Lorenz W. (2020) Physical Models: Their Historical and Current Use in Civil and Building Engineering Design. John Wiley and Sons, ISBN: 978-3-433-03257-2.
  7. Addis, B. (2020) Past, current and future use of physical models in civil engineering design. Proceedings of the Institution of Civil Engineers-Civil Engineering, 174(2), 61-70, https://doi.org/ 10.1680/jcien.20.00028.
  8. Taylor, R.E. (Ed.) (2018) Geotechnical Centrifuge Technology. CRC Press, London. ISBN: 9780367863852.
  9. Jafarian, Y., Taghavizade, H., Rouhi, S., Shojaemehr, S., and Esmaeilpour, P. (2020) Shaking table experiments to evaluate the boundary effects on seismic response of saturated and dry sands in level ground condition. International Journal of Civil Engineering, 18(7), 783-795, https://doi.org/10.1007/s40999-019-00485-4.
  10. Severn, R.T. (2011) The development of shaking tables–a historical note. Earthquake Engineering and Structural Dynamics, 40(2), 195-213, https://doi.org/10.1002/eqe.1015.
  11. Esmaeilpour, P. (2018) Seismic Behavior of Shallow Foundations on Saturated Loose Sand and Rehabilitation Using Helical Piles: 1g Physical Modeling in Laminar Shear Container. D. Dissertation, International Institute of Earthquake Engineering and Seismology (IIEES), Tehran, Iran (in Persian).
  12. Pokrovskii, G.I. and Fiodorov, I.S. (1936) Studies of soil pressures and deformations by means of a centrifuge. Proceeding of 1st International Conference of Soil Mechanics and Foundation Engineering, 1, p. 70.
  13. Kimura, T. (1988) Centrifuge Research Activities in Japan. Centrifuges in Soil Mechanics, Craig, W.H. James, R.G. and Schofield A.N. (Ed.) Balkema, Rotterdam, 19-28.
  14. Craig, W.H. (1989) The use of a centrifuge in geotechnical engineering education. Geotechnical Testing Journal, 12, 288-291, https://doi.org/ 10.1520/GTJ10986J.
  15. Okamoto, S. (1956) Bearing capacity of sandy soil and lateral earth pressure during earthquake. Proceeding of the 1st World Conference on Earthquake Engineering, California, USA, 1-26.
  16. Drosos, V.A., Gerolymos, N., and Gazetas, G. (2012) Constitutive model for soil amplification of ground shaking: Parameter calibration, comparisons, validation. Soil Dynamics and Earthquake Engineering, 42, 255-274, http://      org/ 10.1016/j.soildyn.2012.06.003.
  17. Giridharan, S., Gowda, S., Stolle, D.F., and Moormann, C. (2020) Comparison of UBCSAND and hypoplastic soil model predictions using the material point method. Soils and Foundations, 60(4), 989-1000, https://doi.org/10.1016/j.sandf. 2020.06.001.
  18. Kramer, S.L. (1996) Geotechnical Earthquake Engineering. Prentice Hall, Englewood Cliffs, New Jersey. ISBN-13: 978-0133749434.
  19. Jafarian, Y., Esmaeilpour, P., Shojaemehr, S., Taghavizade, H., Rouhi, S., and McCartney, J.S. (2021) Impacts of fixed-end and flexible boundary conditions on seismic response of shallow foundations on saturated sand in 1g shaking table tests. Geotechnical Testing Journal, 44(3), 637-664, https://doi.org/10.1007/s40999-019-00485-4.
  20. Zeng, X. and Schofield, A.N. (1996) Design and performance of an equivalent-shear-beam container for earthquake centrifuge modelling. Géotechnique, 46(1), 83-102, https://doi.org/10.1680/geot.1996. 46.1.83.
  21. Whitman, R.V. and Lambe, P.C. (1986) Effect of boundary conditions upon centrifuge experiments using ground motion simulation. Geotechnical Testing Journal, 9(2), 61-71, https://doi.org/10. 1520/GTJ11031J.
  22. Fishman, K.L., Mander, J.B., and Richards Jr, R. (1995) Laboratory study of seismic free-field response of sand. Soil Dynamics and Earthquake Engineering, 14(1), 33-43, https://doi.org/10.1016/ 0267-7261(94)00017-B.
  23. Jakrapiyanun, W. (2002) Physical Modeling of Dynamics Soil-Foundation- Structure-Interaction Using a Laminar Container. D. Dissertation, University of California San Diego, California, USA.
  24. Kokusho, T. and Iwatate, T. (1979) Scaled model tests and numerical analyses on nonlinear dynamic response of soft grounds. Proceedings of the Japan Society of Civil Engineers, 1979(285), 57-67, https://doi.org/10.2208/jscej1969.1979.285_57.
  25. Lambe, P.C. (1981) Dynamic Centrifuge Modeling of a Horizontal Sand Stratum. ScD thesis, Department of Civil Engineering, Massachusetts Institute of Technology (MIT), Cambridge, USA.
  26. Whitman, R.V., Lambe, P.C., and Kutter, B.L. (1981) Initial results from a stacked ring apparatus for simulation of a soil profile. Proceeding of 1st International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, S. Prakash (Ed.), University of Missouri-Rolla, Rolla, Missouri, USA, 3, 1105-1110.
  27. Arulanandan, K., Anandarajah, A., and Abghari, (1983) Centrifugal modeling of soil lique-      faction susceptibility. Journal of Geotechnical               Engineering, 109(3), 281-300, https://doi.org/10. 1061/(ASCE)0733-9410(1983)109:3(281).
  28. Hushmand, B., Scott, R.F., and Crouse, C.B. (1988) Centrifuge liquefaction tests in a laminar box. Géotechnique, 38(2), 253-262, https://doi.org/ 10.1680/geot.1988.38.2.253.
  29. Yoshikawa, M. and Arano, M. (1989) Dynamic behavior of a model pile foundation-ground systems in the liquefaction process. Proceeding of the 9th World Conference on Earthquake Engineering (9WCEE), 3, 599-604, Tokyo-Kyoto, Japan.
  30. Jafarzadeh, B. (2004) Design and evaluation concepts of laminar shear box for 1g shaking table tests. Proceeding of the 13th World Conference on Earthquake Engineering (13WCEE), Vancouver, Canada, p. 1391.
  31. Li, Y., Zheng, S., Luo, W., Cui, J., and Chen, Q. (2020) Design and performance of a laminar shear container for shaking table tests. Soil Dynamics and Earthquake Engineering, 135, 106157, https://doi.org/10.1016/j.soildyn.2020.106157.
  32. Thevanayagam, S., Kanagalingam, T., Reinhorn, A., Tharmendhira, R., Dobry, R., Abdoun, T., Zeghal, M., Ecemis, N., and El Shamy, U. (2009) Laminar box system for 1-g physical modeling of liquefaction and lateral spreading. Geotechnical Testing Journal, 32(5), 1-19, http://doi.org/10. 1520/GTJ102154.
  33. Shen, C.K., Li, X.S., Ng, C.W.W., Van Laak, P.A., Kutter, B.L., Cappel, K., and Tauscher, R.C. (1998) Development of a geotechnical centrifuge in Hong Kong. Proceeding of the International Conference Centrifuge 98, Tokyo, Japan.
  34. Endo, O. and Komanobe, K. (1995) Single and multi-directional shaking table tests of sand liquefaction. Proceeding of the 1st Conference on Earthquake Geotechnical Engineering, Tokyo, Japan, 675-681.
  35. Ueng, T.S., Wang, M.H., Chen, M.H., Chen, C.H., and Peng, L.H. (2006) A large biaxial shear box for shaking table test on saturated sand. Geotechnical Testing Journal, 29(1), 1-8, https://doi.org/10. 1520/GTJ12649.
  36. Turan, A., Hinchberger, S.D., and El Naggar, H. (2009) Design and commissioning of a laminar soil container for use on small shaking tables. Soil Dynamics and Earthquake Engineering, 29(2), 404-414, https://doi.org/10.1016/j.soildyn.2008.04. 003.
  37. Segaline, H., Sáez, E., and Ubilla, J. (2021) Continuous characterization of dynamic soil behavior by digital image correlation in a transparent shear laminar box. Acta Geotechnica, 1-20, https://doi.org/10.1007/s11440-021-01351-1.
  38. Krishna, A.M. and Latha, G.M. (2009). Container boundary effects in shaking table tests on reinforced soil wall models. International Journal of Physical Modeling in Geotechnics, 9(4), 1-14, https://doi.org/10.1680/ijpmg.2009.090401.
  39. Teymur, B. and Madabhushi, S.P.G. (2003) Experimental study of boundary effects in dynamic centrifuge modelling. Géotechnique, 53(7), 655-663, https://doi.org/10.1680/geot.2003.53.7.655.
  40. Lee, C.J., Wei, Y.C., and Kuo, Y.C. (2012) Boundary effects of a laminar container in centrifuge shaking table tests. Soil Dynamics and Earthquake Engineering, 34(1), 37-51, https://doi. org/10.1016/j.soildyn.2011.10.011.
  41. Pozo, C., Gng, Z., and Askarinejad, A. (2016) Evaluation of soft boundary effects (SBE) on the behavior of a shallow foundation. Proceeding of the 3rd European Conference on Physical Modeling in Geotechnics (Eurofuge 2016), Nantes, France, 385-390.
  42. Tsai, C.C., Lin, C.Y., Dashti, S., and Kirkwood, P. (2021) Influence of centrifuge container boundaries and loading characteristics on evaluation of dynamic properties in dry sand. Soil Dynamics and Earthquake Engineering, 142, 106567, https:// doi.org/10.1016/j.soildyn.2020.106567.
  43. Haeri, S.M., Rajabigol, M., Salaripour, S., Kavand, A., Sayyaf, H., Afzalsoltani, S., and Pakzad, A. (2019) Effects of liquefaction-induced lateral spreading on a 3×3 pile group using 1g shake table and laminar shear box. Earthquake Geotechnical Engineering for Protection and Development of Environment and Constructions, Silvestri F., Moraci N. (Ed.) CRC Press, London, 2764-2770.
  44. Van Laak, P.A., Taboada, V.M., Dobry, R., and Elgamal, A.W. (1994) Earthquake centrifuge modeling using a laminar box. Proceeding of Dynamic Geotechnical Testing II, ASTM International, San Francisco, California, USA, 370-384, https://doi.org/10.1520/STP13225S.
  45. Prasad, S.K. (1996) Evaluation of Deformation Characteristics of 1-g Model Ground during Shaking Using a Laminar Box. D. Dissertation, University of Tokyo, Japan.
  46. Prasad, S.K., Towhata, I., Chandradhara, G.P., and Nanjundaswamy, P. (2004) Shaking table tests in earthquake geotechnical engineering. Current Science, 87(10), 1398-1404, http://www.jstor.org/ stable/24109480.
  47. Ecemis, N. (2013) Simulation of seismic liquefaction: 1-g model testing system and shaking table tests. European Journal of Environmental and Civil Engineering, 17(10), 899-919, https:// doi.org/10.1080/19648189.2013.833140.
  48. Lei, H., Hu, Y., Han, Q., Zheng, G., Zhao, B., and Du, Y. (2020) Design and test verification of a cylindrical 3D laminar shear soil container for use on shaking tables. Soil Dynamics and Earthquake Engineering, 139, 106384. https://doi.org/10.1016/ j.soildyn.2020.106384.
  49. Gazetas, G. (1982) Vibrational characteristics of soil deposits with variable wave velocity. International Journal for Numerical and Analytical Methods in Geomechanics, 6(1), 1-20, https://doi. org/10.1002/nag.1610060103.
  50. Taylor, C.A., Dar, A.R., and Crewe, A.J. (1995) Shaking table modeling of seismic geotechnical problems. Proceeding of the 10th European Conference on Earthquake Engineers, Vienna, Austria, 441-446.
  51. Pitilakis, D., Dietz, M., Wood, D.M., Clouteau, D., and Modaressi, A. (2008) Numerical simulation of dynamic soil-structure interaction in shaking table testing. Soil Dynamics and Earthquake Engineering, 28(6), 453-467, https://doi.org/10. 1016/j.soildyn.2007.07.011.
  52. Tang, L., Ling, X., Xu, P., Gao, X., and Wang, D. (2010) Shake table test of soil-pile groups-bridge structure interaction in liquefiable ground. Earthquake Engineering and Engineering Vibration, 9(1), 39-50, https://doi.org/10.1007/ s11803-009-8131-7.
  53. Tsai, C.C., Lin, W.C., and Chiou, J.S. (2016) Identification of dynamic soil properties through shaking table tests on a large saturated sand specimen in a laminar shear box. Soil Dynamics and Earthquake Engineering, 83, 59-68, https:// doi.org/10.1016/j.soildyn.2016.01.007.
  54. Tabatabaiefar, H.R. (2016) Detail design and construction procedure of laminar soil containers for experimental shaking table tests. International Journal of Geotechnical Engineering, 10(4), 328-336, https://doi.org/10.1080/19386362.2016. 1145419.
  55. Vivek, B. and Raychowdhury, P. (2019) Design and calibration of a laminar soil box suitable for a low-capacity shake table using free-field tests on Ganga sand. Soils and Foundations, 59(5), 1602-1612, https://doi.org/10.1016/j.sandf.2019.03.010.
  56. Kim, H., Kim, D., Lee, Y., and Kim, H. (2020) Effect of soil box boundary conditions on dynamic behavior of model soil in 1g shaking table test. Applied Sciences, 10(13), 4642, https://doi.org/ 10.3390/app10134642.
  57. Esmaeilpour, P. and Jafarian, Y. (2019) Detail design and construction procedure of a large-scale aluminum laminar shear box for 1g shaking table tests. Proceeding of 8th International Conference on Seismology and Earthquake Engineering (SEE8), Tehran, Iran.
  58. Esmaeilpour, P., Shojaeemehr, S., Taghavizadeh, H., and Jafarian, Y. (2019) Detail design and performance of a small-scale laminar shear box for 1g shaking table experiments. Proceeding of 8th International Conference on Seismology and Earthquake Engineering (SEE8), Tehran, Iran.
  59. Farrin, M. and Hajialilue-Bonab, M. (2019) Experimental study of the seismic response of Tabriz subway tunnel in dry sand. Bulletin of Earthquake Science and Engineering, 6(3), 85-101.
  60. Fathi, H., Jamshidi Chenari, R., and Vafaeian, (2020) Shaking table study on PET strips-          sand mixtures using laminar box modelling. Geotechnical and Geological Engineering, 38(1), 683-694, https://doi.org/10.1007/s10706-019-01057-y.