مروری بر ادبیات فنی رفتار لرزه‌ای غیرخطی دره‌های آبرفتی دو بعدی

نوع مقاله : مقاله مروری

نویسندگان

1 دانشجوی دکتری، پژوهشگاه بین‌المللی زلزله‌شناسی و مهندسی زلزله، تهران، ایران

2 استاد، پژوهشکده مهندسی ژئوتکنیک، پژوهشگاه بین‌المللی زلزله‌شناسی و مهندسی زلزله، تهران، ایران

3 دانش‌آموخته‌ کارشناسی ارشد مهندسی زلزله، پژوهشگاه بین‌المللی زلزله‌شناسی و مهندسی، تهران، ایران

چکیده

پاسخ لرزه‌ای دره‌های آبرفتی به‌شدت تحت تأثیر هندسه و مشخصات مکانیکی دره و لایه‌های رسوبی داخل آن است. امواج لرزه‌ای که از منبع به سایت وارد می‌شوند، ممکن است به علت اختلاف سرعت حرکت موج در بین لایه‌های مختلف، به‌شدت دچار بزرگنمایی شوند. یکی از دلایل اصلی برای ارائه‌ی تحلیل‌های پاسخ ساختگاه، تفاوت در پاسخ لرزه‌ای سازه‌هایی است که با فرکانس‌های متفاوت بر روی زمین قرار دارند. مطالعات زیادی درزمینه‌ی تحلیل رفتار لرزه‌ای عوارض توپوگرافی صورت گرفته است که عمدتاً به‌صورت خطی یا خطی معادل بوده است‌ و تحلیل‌های غیرخطی سهم اندکی از این پژوهش‌ها را شامل می‌شوند. در این مقاله به بررسی مطالعات عددی انجام‌شده بر روی رفتار لرزه‌ای غیرخطی دره‌های آبرفتی تحت اثر امواج مهاجم پرداخته ‌شده است. نتایج موجود در ادبیات فنی آورده شده و اثر پارامترهای مختلف و نحوه‌ی تأثیر آنها بر روی پاسخ لرزه‌ای دره‌های آبرفتی بررسی ‌شده است. همچنین تفاوت میان روش‌های مختلف موجود در ادبیات فنی و نتایج به‌دست‌آمده مشخص گردیده است و در نهایت به جمع‌بندی تأثیرات و میزان اهمیت هرکدام از این پارامترها پرداخته‌ شده است.

کلیدواژه‌ها

موضوعات


ABAQUS, Inc. (2008). ABAQUS User’s Manual. Providence, Rhode Island.
Anastasopoulos, I., Gazetas, G., Loli, M., Apostolou, M., & Gerolymos, N. (2010). Soil failure can be used for earthquake protection of structures. Bull. Earthquake Engineering, 8(2), 309-326.
Bardet, J.-P., & Tobita, T. (2001). NERA: A Computer Program for Nonlinear Earthquake Site Response Analyses of Layered Soil Deposits. A Report from Department of Civil Engineering, University of Southern California.
BSSC. (2003). The NEHRP (National Earthquake Hazards Reduction Program) Recommended Provisions for Seismic Regulations for New Buildings and Other Structures, Part 1: Provisions (FEMA 368). Building Seismic Safety Council.
Cundall P.A., & et al. (1980). NESSI—Soil Structure Interaction Program for Dynamic and Static Problems, Report 51508-9. Norwegian Geotechnical Institute.
Cundall, P. (2008). FLAC3D Manual: A Computer Program for Fast Lagrangian Analysis of Continua (Version 4.0). Minneapolis, MN, USA.
Ganji, A., Jafari, M.K., Najafizadeh, J., & Kamalian, M. (2014). Considering the method of implicit integration for the Manzari-Dafalias plasticity Model\r\n\r\nA. Journal of Civil Engineering, 30-2(2), 107-116.
Gatmiri, B., & Kamalian, M. (2002). Two-dimensional transient wave propagation in anelastic saturated porous media by a Hybrid FE/BE method. 5th European Conference. on Numerical Methods in Geotechnical Engineering, 947-956.
Gatmiri, B., Kamalian, M., Jafari Karimi, M., & Sohrabi, A. (2003). Transient Site Response Analyisis of Two-Dimensional Saturated Sedimentary Valleys by a Hybrid FEM/BEM. 4th International Conference of Earthquake Engineering and Seismology. Tehran, Iran.
Gelagoti, F., & et al. (2012). Nonlinear dimensional analysis of trapezoidal valleys subjected to vertically propagating SV waves. Bulletin of the Seismological Society of America, 102.
Gelagoti, F., Kourkoulis, R., Anastasopoulos, I., Tazoh, T., & Gazetas, G. (2010). Seismic wave propagation in a very soft alluvial valley: Sensitivity to ground-motion details and soil nonlinearity, and generation of a parasitic vertical component. Bull. Seismol. Soc. Am., 100(6), 3035-3054. doi:10.1785/0120100002
Gerolymos, N., Gazetas, G., & Tazoh, T. (2005). Seismic response of yielding pile in nonlinear soil. Proc. 1st Greece–Japan Workshop, Seismic Design, Observation and Retrofit of Foundations, 25-36. Athens, Greece.
Hudson, M., Idriss, I.M., & Beikae, M. (1994). QUAD4M—A computer program to evaluate the seismic response of soil structures using finite element procedures and incorporating a compliant base. Center for Geotechnical Modeling, Dept. of Civil and Environmental Engineering. Davis, California.
ICBO. (1997). Uniform Building Code. International Council of Building Officials.
ICBO. (2003). International Building Code. Inter-national Council of Building Officials.
Idriss, I. (1990). Response of soft soil sites during earthquakes. Proceedings memorial symposium to honour Professor Harry Bolton Seed, 273-89. Berkeley, California.
Iwan, W. (1976). On a class of models for the yielding behaviour of continuous and composite systems. Journal Appl. Mech., 34, 612-692.
Iyisan, R., & Khanbabazadeh, H. (2013). A numerical study on the basin edge effect on soil amplification. Bull. Earthq. Eng., 11(5). doi:doi:10.1007/s10518-013-9451-6.
Joyner, W. (1975). A method for calculating nonlinear seismic response in two dimensions. Bulletin of Seismological Society of America, 65(5), 1337-1357.
Joyner, W., & Chen, A. (1975). Calculation of nonlinear ground response in earthquakes. Bull. Seism. Soc. America, 65(5), 1315-1336.
Kamalian, M., Gatmiri, B., Sohrabi-Bidar, A., Razmkhah, A. (2006) Time-domain wave propagation analysis of two-dimensional elastic media by coupling BEM and FEM. Amirkabir Journal of Civil Engineering, 37(1), 1-11.
Kamalian, M., Jafari, M., Sohrabi-Bidar, A., & et al. (2006). Time-domain two-dimensional site response analysis of non-homogeneous topographic structures   by a hybrid FE/BE method. Soil Dynamics and Earthquake Engineering, 26, 753-765.
Khanbabazadeh, H. (2014). The Effect of the Bedrock Slope on the Soil Amplification. Dissertation, ITU Institute of Science and Technology, Istanbul.
Khanbabazadeh, H., & et al. (2016). 2D non-linear seismic response of the Dinar basin, TURKEY. Soil. Dyn. Earthq. Eng., 89, 5-11.
Khanbabazadeh, H. et al. . (2018). Nonlinear dynamic behavior of the basins with 2D bedrock. Soil Dyn. Earthq. Eng., 108-115.
Kuhlemeyer, R., & Lysmer, J. (1973). Finite element method accuracy for wave propagation problems. J. Soil Mech. Found Div. , 99(EM5), 421-427.
Liam Finn, W., & Lei, Z. (1996). Data on dynamic amplification factors under strong shaking. International Workshop on Site Response Subjected to Strong Earthquake Motions, 16-17, Yokosuka, Japan.
Lysmer, J., & Kuhlemeyer, R. (1969). Finite dynamic model for infinite media. J. Eng. Mech., 95(EM4), 859-877.
Marsh, E. (1992). Two Dimensional Nonlinear Seismic Ground Response Studies. Dissertation, University of Auckland.
Najafizadeh, J., Kamalian, M., Jafari, M., & Khaji, N. (2014). Seismic analysis of rectangular alluvial valleys subjected to incident sv waves by using the spectral finite element method. International Journal of Civil Engineering, 12(3), 251-263.
Nohegoo-Shahvari, A., Kamalian, M., & Panji, M. (2019). A hybrid time-domain half-plane FE/BE approach for SH-wave scattering of alluvial sites. Engineering Analysis with Boundary Elements, 105, 194-206.
Prevost, J.H. (1985). A simple plasticity theory for frictional cohesionless soils. Int. J. Soil Dynam. Earthq. Eng., 4(1), 9-17. https://doi.org/10.1016/0261-7277(85) 90030-0.
Psarropoulos, P., & et al. (2007). Linear and nonlinear valley amplification effects on seismic ground motion. Soils and Foundations, 47(5), 857-871.
Sincraian, M. (2000). Nonlinear seismic response of a volcanic hill using the finite element method. Soil Dynamics and Earthquake Engineering, 20, 145-154.
Sohrabi Bidar, A., Kamalian, M., & Jafari, M. (2010). Seismic response of 3D gaussian shaped valleys to vertically propagating incident waves. Geophysical Journal International, 183(3), 1429-1442.
Sun, C.-G., & Chung, C.-K. (2008). Assessment of    site effects of a shallow and wide basin using geotechnical information-based spatial characterization. Soil Dynamics and Earthquake Engineering, 28(12), 1028-1044.
Takemiya, H., & Adam, M. (1998). 2D nonlinear seismic ground analysis By FEM-BEM. Structral Engineering/Earthquake Engineering, 15(1), 19s-27s.
Takemiya, H., & Ishiyama, M. (1993). Nonlinear seismic response of Alluvium of non-flat base. Proc. Japan Society of Civil Engineers, No.477/I-25, 73-81, 1993.10.
Taylor, P., & Larkin, T. (1978). Seismic site response of nonlinear soil media. Proc. ASCE, 104(GT3), 369-383.
TC4. (1993). Manual for Zonation on Seismic Geotechnical Hazard. The Technical Committee for Earthquake Geotechnical Engineering, The Japanese Society of Soil Mechanics and Foundation Eng.
Zhang, J., & et al. (2009). Response Spectral Amplification Ratios from One and Two Dimensional Nonlinear Soil Site Model.
Zhu, C., Thambiratnam, D., & Zhang, J. (2015). Response of sedimentary   basin to obliquely incident SH waves. Bull. Earthquake Eng., 14, 647-671. doi:10.1007/s10518-015-9856-5.