اثر مؤلفه دورانی شتاب‎نگاشت‎های لرزه‌ای حوزه نزدیک گسل بر رفتار دیوار‌های پایه-گهواره‌ای مرکزگرا

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری مهندسی زلزله، دانشکده مهندسی عمران، دانشگاه علم و صنعت ایران، تهران، ایران

2 استادیار، مهندسی سازه، دانشکده مهندسی عمران، دانشگاه علم و صنعت ایران، تهران، ایران

چکیده

سیستم‌های نوین باربر جانبی مرکزگرا، با متمرکز کردن خرابی‌ها در اعضای فیوز، باعث کاهش هزینه‌های تعمیر شده و امکان بهره‌برداری بدون وقفه را فراهم می‎آورند. دیوار برشی بتنی مرکزگرای گهواره‌ای جزو این سیستم‌ها محسوب می‌شود. در تحقیق حاضر، رفتار دیوارهای پایه-گهواره‌ای مرکزگرا تحت 25 شتاب‎نگاشت نزدیک گسل پالس مانند بررسی شد. اثر شتاب‌نگاشت‌های مزبور بر روی سازه‌ها در دو حالت با و بدون مؤلفه دورانی زلزله مورد بررسی قرار گرفت. به‌منظور مقایسه و در نظر گرفتن مؤلفه‌های دورانی، شش ترکیب بارگذاری لرزه‌ای در نظر گرفته‌ شده است. برای تحلیل‌ تاریخچه زمانی غیرخطی، سازه‎های دارای 4، 8، 12، 16 و 20 طبقه انتخاب شدند. مدل‌سازی‎ها در نرم‌افزار OpenSees  به‌صورت دو بعدی انجام شدند. نتایج نشان داد لحاظ مؤلفه دورانی زلزله می‌تواند پاسخ‌های سازه را افزایش دهد. به‌طوری‌که حداکثر شتاب، جابه‌جایی نسبی، خمش، برش طبقات، جابه‌جایی نسبی پسماند بام و نسبت تنش حداکثر کابل به‌ترتیب برابر با 24/6، 9/3، 10/4، 9/6، 623 و 11 درصد با لحاظ مؤلفه دورانی زلزله به‌صورت حداکثر، افزایش‌یافته است. در سیستم‌های دیوار پایه-گهواره‌ای مورد بررسی، حداکثر جابه‌جایی پسماند برابر با 0/01 درصد بود. در پایان می‌توان گفت در سیستم‌های پایه‌-گهواره‌ای مرکزگرا، زاویه شتاب‌نگاشت با مؤلفه گهواره‌ای حداکثر نسبت به زاویه شتاب‌نگاشت با مؤلفه افقی حداکثر، ممکن است پاسخ‌های بیشتری را ایجاد کند.

کلیدواژه‌ها

موضوعات


  1. Masrom, M.A. and Hamid, N.H.A. (2020) Review on the rocking wall systems as a self-centering mechanism and its interaction with floor diaphragm in precast concrete structures. Am. J. Solids Struct., 17(6).
  2. Mohammadi Dehcheshmeh, E. and Broujerdian, V. (2021) Seismic Design Coefficients of Self-Centering Multiple Rocking Walls Subjected to Effect of Far and Near-Field Earthquakes. Infrastruct. Res., 7(1) (in progress), doi: 10.22091/cer.2021.7025.1257.
  3. Broujerdian V. and Mohammadi Dehcheshmeh, E. (2021) Investigation of the Behavior of Self-Centering Base- and Double- Rocking Walls Subjected to Far-Field and Near-Field Earthquakes. Ferdowsi Civ. Eng., doi: 10.22067/jfcei.2021. 68094.1008.
  4. Broujerdian, V. and Mohammadi Dehcheshmeh, E. (2022) Locating the rocking section in self-centering bi-rocking walls to achieve the best seismic performance. Earthq. Eng., doi: 10.1007/s10518-022-01325-y.
  5. Mohammadi Dehcheshmeh, E. and Broujerdian, V. (2022) Determination of optimal behavior of self-centering multiple-rocking walls subjected to far-field and near-field ground motions. Build. Eng., p. 103509, doi: https://doi.org/10.1016/j.jobe.2021. 103509.
  6. Perez, F.D.J. (1998) Lateral Load Behavior and Design of Unbonded Post-Tensioned Precast Concrete Walls with Ductile Vertical Joint Connectors.
  7. Eatherton, M.R., Ma, X., Krawinkler, H., Mar, D., Billington, S., Hajjar, J.F., and Deierlein, G.G. (2014) Design concepts for controlled rocking of self-centering steel-braced frames. Journal of Structural Engineering, 140(11), p. 4014082.
  8. Aghagholizadeh, M. and Makris, N. (2018) Seismic Response of a Yielding Structure Coupled with a Rocking Wall. Struct. Eng., 144(2), 04017196, doi: 10.1093/gbe/evr001.
  9. Wiebe, L. and Christopoulos, C. (2009) Mitigation of higher mode effects in base-rocking systems by using multiple rocking sections. Earthq. Eng., 13(1) SUPPL. 1, 83-108, doi: 10.1080/13632460902813315.
  10. Kurama, Y. and Pessiki, S. (1999) Seismic behavior and design of unbonded post-tensioned precast concrete walls. PCI Journal, 44, 72-89.
  11. Kurama, Y.C. (2001) Simplified seismic design approach for friction-damped unbonded post-tensioned precast concrete walls. ACI Struct. J., 98(5), 705-716.
  12. Restrepo, J.I. and Rahman, A. (2007) Seismic Performance of Self-Centering Structural Walls Incorporating Energy Dissipators. Struct. Eng., 133(11), 1560-1570, doi: 10.1061/(ASCE)0733-9445(2007)133:11(1560).
  13. Holden, T., Restrepo, J., and Mander, J.B. (2003) Seismic Performance of Precast Reinforced and Prestressed Concrete Walls. Struct. Eng., 129(3), 286-296, doi: 10.1061/(ASCE)0733-9445(2003)129: 3(286).
  14. Perez, F.J., Pessiki, S., and Sause, R. (2004) Seismic design of unbonded concrete walls with vertical joint connectors. PCI Journal, 49(1), 58-79, doi: 10.15554/pcij.01012004.58.79.
  15. Henry, R.S., Aaleti, S., Sritharan, S., and Ingham, J.M. (2010) Concept and finite-element modeling of new steel shear connectors for self-centering wall systems. Eng. Mech., 136(2), 220-229, doi: 10.1061/(ASCE)EM.1943-7889.0000071.
  16. Henry, R.S., Brooke, N.J., Sritharan, S., and Ingham, J.M. (2012) Defining concrete com-pressive strain in unbonded post-tensioned walls. ACI Struct. J., 109(1), 101-112.
  17. Henry, R.S., Sritharan, S., and Ingham, J.M. (2016) Finite element analysis of the PreWEC self-centering concrete wall system. Struct., 115, 28-41, doi: 10.1016/j.engstruct.2016.02.029.
  18. Henry, R.S., Sritharan, S., and Ingham, J.M. (2016) Residual drift analyses of realistic self-centering concrete wall systems. Struct., 10(2), 409-428, doi: 10.12989/eas.2016.10.2.409.
  19. Smith, B.J. and Kurama, Y.C. (2014) Seismic design guidelines for solid and perforated hybrid precast concrete shear walls. PCI Journal, 59(3), 43-59, doi: 10.15554/pcij.06012014.43.59.
  20. Smith, B.J., Kurama, Y.C., and McGinnis, M.J. (2015) Perforated hybrid precast shear walls for seismic regions. ACI Struct. J., 112(3), 359-370, doi: 10.14359/51687410.
  21. Mpampatsikos, V.M., Bressanelli, E., Belleri, A., and Nascimbene, R.A (2020) Non-dimensional parametric approach for the design of PT tendons and mild steel dissipaters in precast rocking walls. Struct., 212, p. 110513.
  22. Gu, A., Zhou, Y., Xiao, Y., Li, Q., and Qu, G. (2019) Experimental study and parameter analysis on the seismic performance of self-centering hybrid reinforced concrete shear walls. Soil Dyn. Earthq. Eng., 116, 409-420.
  23. Hu, X., Lu, Q., and Yang, Y. (2018) Rocking Response Analysis of Self-Centering Walls under Ground Excitations. Mathematical Problems in Engineering, 1-12.
  24. Buddika, H.A.D.S. and Wijeyewickrema, A.C. (2016) Seismic Performance Evaluation of Posttensioned Hybrid Precast Wall-Frame Buildings and Comparison with Shear Wall-Frame Buildings. Struct. Eng., 142(6), doi: 10.1061/ (ASCE)ST.1943-541X.0001466.
  25. Broujerdian, V. and Mohammadi Dehcheshmeh, E. (2021) Development of fragility curves for self-centering base-rocking walls subjected to far and near field ground motions. Sharif J. Civ. Eng., doi: 10.24200/j30.2021.57279.2897.
  26. Lu, X., Yang, B., and Zhao, B. (2018) Shake-table testing of a self-centering precast reinforced concrete frame with shear walls. Eng. Eng. Vib., 17(2), 221-233, doi: 10.1007/s11803-018-0436-y.
  27. Sun, T., Kurama, Y.C., Zhang, P., and Ou, J. (2018) Linear-elastic lateral load analysis and seismic design of pin-supported wall-frame struct-ures with yielding dampers. Eng. Struct. Dyn., 47(4), 988-1013, doi: 10.1002/eqe. 3002.
  28. Al-Subaihawi, S. and Pessiki, S. (2019) Static pushover response of spring anchored unbonded post-tensioned rocking systems. Struct., 200, 109582.
  29. Vicencio, F. and Alexander, N.A. (2019) A parametric study on the effect of rotational ground motions on building structural responses. Soil Dyn. Earthq. Eng., 118, 191206.
  30. Özşahin, E. and Pekcan, G. (2019) Effect of torsional ground motion on the seismic response of highway bridges. Earthq. Eng., 17(5), 2603-2625.
  31. Sokol, M., Ároch, R., Lamperová, K., Marton, M., and García-Sanz-Calcedo, J. (2021) Parametric analysis of rotational effects in seismic design of tall structures. Sci., 11(2), 597.
  32. Teymoori, E., Abbasi, S., and Moradloo, J. (2018) Seismic analysis of cylindrical ground liquid storage tanks incorporating the effects of rotational components of earthquake. Quranic Knowledge Research, 18(4), 251-264 (in Persian).
  33. Loghman, V., Tajammolian, H., and Khoshnoudian, (2017) Effects of rotational components of earthquakes on seismic responses of triple concave friction pendulum base-isolated structures. J. Vib. Control, 23(9), 1495-1517.
  34. Payganeh M.B. and Mortezaei, A. (2020) Seismic damage assessment of rc buildings subjected to the rotational ground motion records considering soil-structure interaction. Rehabil. Civ. Eng., 8(2), 62-80.
  35. Pennucci, D.G., Calvi, M., and Sullivan, T.J. (2009) Displacement-based design of precast walls with additional dampers. Earthq. Eng., 13(S1), 40-65.
  36. Khanmohammadi, M. and Heydari, S. (2015) Seismic behavior improvement of reinforced concrete shear wall buildings using multiple rocking systems. Struct., 100, 577-589, doi: 10.1016/j.engstruct.2015.06.043.
  37. Basu, D., Whittaker, A.S., and Constantinou, M.C. (2012) Characterizing the Rotational Components of Earthquake Ground Motion. MCEER.
  38. Newmark, N.M. (1969) Torsion in Symmetrical Buildings.
  39. Ghafory-Ashtiany, M. and Singh, M.P. (1986) Structural response for six correlated earthquake components. Eng. Struct. Dyn., 14(1), 103-119.
  40. Falamarz-Sheikhabadi, M.R. and Ghafory-Ashtiany, M. (2012) Approximate formulas for rotational effects in earthquake engineering. Seismol., 16(4), 815-827.
  41. Falamarz-Sheikhabadi, M.R. (2014) Simplified relations for the application of rotational com-ponents to seismic design codes. Struct., 59, 141-152.
  42. Falamarz-Sheikhabadi, M.R., Zerva, A., and Ghafory-Ashtiany, M. (2017) Revised seismic intensity parameters for middle-field horizontal and rocking strong ground motions. Struct. Eng., 143(1), 4016155.
  43. Penzien, J. and Watabe, M. (1974) Characteristics of 3-dimensional earthquake ground motions. Eng. Struct. Dyn., 3(4), 365-373.
  44. Castellani, A. and Boffi, G. (1986) Rotational components of the surface ground motion during an earthquake. Eng. Struct. Dyn., 14(5), 751-767.
  45. Spudich, P., Steck, L.K., Hellweg, M., Fletcher, J.B., and Baker, L.M. (1995) Transient stresses at Parkfield, California, produced by the M 7.4 Landers earthquake of June 28, 1992: Observations from the UPSAR dense seismograph array. Geophys. Res. Solid Earth, 100(B1), 675-690.
  46. Laouami, N. and Labbe, P. (2002) Experimental analysis of seismic torsional ground motion recorded by the LSST-Lotung array. Eng. Struct. Dyn., 31(12), 2141-2148.
  47. Tajammolian, H. and Khoshnoudian, F. (2018) Acceleration amplification due to rotational components of near-fault earthquakes in triple concave friction pendulum base-isolated structures. J. Civ. Eng., 45(4), 314-327.
  48. Archila, M. (2014) Directionality Effects of Pulse-Like Near Field Ground Motions on Seismic Response of Tall Buildings. University of British Columbia.
  49. FEMA (2009) FEMA P695: Quantification of Building Seismic Performance Factors. US Department of Homeland Security.
  50. ASCE (2010) Minimum Design Loads for Buildings and Other Structures (ASCE/SEI 7-10).