تشخیص آسیب با استفاده از شاخص آسیب انرژی و جابه‌جایی در فاز تحلیلی مدل ASCE

نوع مقاله : Articles

نویسندگان

1 گروه مهندسی عمران، واحد قزوین، دانشگاه آزاد اسلامی، قزوین، ایران

2 پژوهشکده مهندسی سازه، پژوهشگاه بین‌المللی زلزله‌شناسی و مهندسی زلزله، تهران، ایران

چکیده

تشخیص آسیب یکی از ابزارهای مهم پایش سلامت سازه برای ارزیابی بهتر سازه‌ها در طول عمر آنها می‌باشد. بسیاری از مطالعات به ارائه روش‌هایی برای تعیین محل آسیب با استفاده از مدل‌های تحلیلی و آزمایشگاهی مانند مدل‌های شاخص پرداخته‌اند. هدف اصلی این مقاله ارائه روش جدید تشخیص محل آسیب ترکیبی برای شناسایی مکان‌های آسیب با استفاده هم‌زمان از شاخص‌های آسیب‌پذیری انرژی و جابه‌جایی می‌باشد. در بخش اول از طریق شاخص انرژی فرکانس آنی EDI و پاسخ‌های شتاب سازه به تعیین الگوهای آسیب پرداخته شده است. در بخش دوم به‌منظور ارزیابی روش اول و همچنین ارائه روشی سریع برای ارزیابی آسیب از طریق شاخص آسیب جابه‌جایی که متشکل از شاخص قابلیت اعتماد خطا β و شاخص تابع چگالی احتمال نرمال  G(x)با استفاده از پاسخ‌های نسبی جابه‌جایی سازه ASCE ارائه گردیده است. نوآوری این روش استفاده هم‌زمان از پاسخ شتاب- جابه‌جایی در طی یک فرایند است که در ارزیابی سریع الگوهای آسیب مؤثرتر است. برای صحت‌سنجی روش‌های ارائه شده، علاوه بر الگوهای آسیب موجود در مسئله شاخص، آسیب جدید دیگر مورد بررسی قرار گرفته است. تجزیه‌وتحلیل گسترده نشان می‌دهد که روش پیشنهادی، محل دقیق آسیب وارده به سازه را با دقت کافی و سرعت مناسب تعیین می‌نماید.

کلیدواژه‌ها


1.    Pierdicca, A., Clementi, F., Maracci, D., Isidori, D., and Lenci, S. (2016) Damage detection in a precast structure subjected to an earthquake: A numerical approach. Engineering Structures, 127, 447-458.
2.    Knitter-Piatkowska, A., Garbowski, T., and Garstecki, A. (2013). Damage detection through wavelet transform and inverse analysis. In VI International Conference on Adaptive Modelling and Simulation (ADMOS 2013), 389-400.
3.    Yang, Z., Wang, L., Wang, H., Ding, Y., and    Dang, X. (2009) Damage detection in composite structures using vibration response under stochastic excitation. Journal of Sound and Vibration, 325(4-5), 755-768.
4.    Huo, L.S., Li, X., Yang, Y.B., and Li, H.N. (2016) Damage detection of structures for ambient loading based on cross correlation function amplitude and SVM. Shock and Vibration, Article ID 3989743, 12p., http://dx.doi.org/10.1155/2016/3989743.
5.    Yan, Y.J., Cheng, L., Wu, Z.Y., and Yam, L.H. (2007) Development in vibration-based structural damage detection technique. Mechanical Systems and Signal Processing, 21(5), 2198-2211.
6.    Melhem, H. and Kim, H. (2003) Damage detection in concrete by Fourier and wavelet analyses. Journal of Engineering Mechanics, 129(5), 571-577.
7.    Whitham, G.B. (2011) Linear and Nonlinear Waves. 42, John Wiley & Sons.
8.    Hera, A. and Hou, Z. (2004) Application of wavelet approach for ASCE structural health monitoring benchmark studies. Journal of Engineering Mechanics, 130(1), 96-104.
9.    Cantero, D. and Basu, B. (2015) Railway infrastructure damage detection using wavelet transformed acceleration response of traversing vehicle. Structural Control and Health Monitoring, 22(1), 62-70.
10.    Tang, J.P., Chiou, D.J., Chen, C.W., Chiang, W.L., Hsu, W.K., Chen, C.Y., and Liu, T.Y. (2011) Retracted: a case study of damage detection in benchmark buildings using a hilbert-huang transform-based method. Journal of Vibration and Control, 17(4), 623-636.
11.    Yang, J.N., Lei, Y., Lin, S., and Huang, N. (2004) Hilbert-Huang based approach for structural damage detection. Journal of Engineering Mechanics, 130(1), 85-95.
12.    Huston, D. (2010) Structural Sensing, Health    Monitoring, and Performance Evaluation. CRC Press.
13.    Piombo, B.A.D., Fasana, A., Marchesiello, S., and Ruzzene, M. (2000) Modelling and identification of the dynamic response of a supported bridge. Mechanical Systems and Signal Processing, 14(1), 75-89.
14.    Lee, J.W., Kim, J.D., Yun, C.B., Yi, J.H., and Shim, J.M. (2002) Health-monitoring method for bridges under ordinary traffic loadings. Journal of Sound and Vibration, 257(2), 247-264.
15.    Khosraviani, M.J., Bahar, O., and Ghasemi, S.H. (2020) Damage detection in continuous deck bridges using statistical cross-correlation function method. Amirkabir Journal of Civil Engineering.
16.    Mallat, S. (1999) A Wavelet Tour of Signal Processing. Elsevier.
17.    Sifuzzaman, M., Islam, M.R., and Ali, M.Z. (2009) Application of wavelet transform and its advantages compared to Fourier transform.
18.    Huang, N.E. (2014) Introduction to the Hilbert–Huang transform and its related mathematical problems. In Hilbert-Huang Transform and its Applications, 1-26.
19.    Huang, N.E., Salvino, L.W., Nieh, Y.Y., Wang, G., and Chen, X. (2013) ‘HHT-based structural health monitoring’. In Health Assessment of Engineered Structures: Bridges, Buildings and other Infra-structures, 203-240.
20.    Yang, J.N., Lei, Y., Pan, S., and Huang, N. (2003) System identification of linear structures based on Hilbert–Huang spectral analysis. Part 1: normal modes. Earthquake Engineering and Structural Dynamics, 32(9), 1443-1467.
21.    WenQin, H., Ying, L., AiJun, G., and Yuan, F.G. (2016) Damage modes recognition and hilbert-huang transform analyses of CFRP laminates utilizing acoustic emission technique. Applied Composite Materials, 23(2), 155-178.
22.    Zhang, Y., Lian, J., and Liu, F. (2016) An improved filtering method based on EEMD and wavelet-threshold for modal parameter identi-fication of hydraulic structure. Mechanical Systems and Signal Processing, 68, 316-329.
23.    Khosraviani, M.J., Bahar, O., and Ghasemi, S.H. (2019) Damage detection in continues bridge deck and ASCE benchmark via instantaneous energy method. In: 8th International Conference of Seismology and Earthquake Engineering (SEE8). Tehran, Iran, IIEES.
24.    Kourehli, S.S. (2017) Damage diagnosis of structures using modal data and static response. Periodica Polytechnica Civil Engineering, 61(1), 135-145.
25.    Papoulis, A. (1977) Signal Analysis. 191, New York: McGraw-Hill.
26.    Zhang, Y., Lian, J., and Liu, F. (2016) An improved filtering method based on EEMD and wavelet-threshold for modal parameter identification of hydraulic structure. Mechanical Systems and Signal Processing, 68, 316-329.
27.    Johnson, E.A., Lam, H.F., Katafygiotis, L.S., and Beck, J.L. (2004) Phase I IASC-ASCE structural health monitoring benchmark problem using simulated data. Journal of Engineering Mechanics, 130(1), 3-15.
28.    Proakis, J.G. and Manolakis, D.G. (1996) Digital Signal Processing. 3, New Jersey, Prentice Hall.
29.    Ogata, K. (1995) Discrete-Time Control Systems. 2, Englewood Cliffs, NJ: Prentice Hall.
30.    Nowak, A.S. and Collins, K.R. (2012) Reliability of Structures. CRC Press.
31.    Ghasemi, S.H. and Nowak, A.S. (2017) Target reliability for bridges with consideration of ultimate limit state. Engineering Structures, 152, 226-237.
32.    Dyke, S.J., Bernal, D., Beck, J.L., and Ventura, C. (2001) An experimental benchmark problem in structural health monitoring. Proceedings of the 3rd International Workshop on Structural Health Monitoring, 488-497, CRC Press.
33.    Johnson, E.A., Lam, H.F., Katafygiotis, L.S., and Beck, J.L. (2001) A benchmark problem for structural health monitoring and damage detection. Structural Control for Civil and Infrastructure Engineering, 317-324.
34.    Dyke, S.J., Caicedo, J.M., and Johnson, E.A. (2000) Monitoring of a benchmark structure for damage identification. Proceedings of the Engineering Mechanics Speciality Conference, Austin, TX.
35.    Lam, H.F., Katafygiotis, L.S., and Mickleborough, N.C. (2004) Application of a statistical model updating approach on phase I of the IASC-ASCE structural health monitoring benchmark study. Journal of Engineering Mechanics, 130(1), 34-48.
36.    Caicedo, J.M., Dyke, S.J., and Johnson, E.A. (2004) Natural excitation technique and eigensystem realization algorithm for phase I of the IASC-ASCE benchmark problem: simulated data. Journal of Engineering Mechanics, 130(1), 49-60.
37.    Wu, J.R. and Li, Q.S. (2006) Structural parameter identification and damage detection for a steel structure using a two-stage finite element model updating method. Journal of Constructional Steel Research, 62(3), 231-239.
38.    Hou, Z. and Hera, A. (2002) Progress of phase II study of the ASCE health monitoring benchmark data using wavelet approach. Proceedings of the 15th ASCE Engineering Mechanics Conference, New York, USA, Columbia University.
39.    Hera, A. and Hou, Z. (2003) Wavelet approach for damage detection using experimental data of ASCE benchmark study. Proceedings of the ASCE Engineering Mechanics Conference.
40.    Casciati, S. (2004) Statistical models comparison for damage detection using the ASCE benchmark. Proc. of Second European Workshop on Structural Health Monitoring, 695-702.
41.    Zimmerman, D.C., Simmermacher, T., and Kaouk, M. (1995, February) Structural damage detection using frequency response functions. Proceedings of Spie the International Society for Optical Engineering, 179-179.
42.    Nair, K.K., Kiremidjian, A.S., and Law, K.H. (2006) Time series-based damage detection and localization algorithm with application to the    ASCE benchmark structure. Journal of Sound       and Vibration, 291(1-2), 349-368.
43.    Than Soe, M. (2013) Vibration-Based Finite Element Model Updating and Structural Damage Identification (Doctoral Dissertation, University of Greenwich).