ارزیابی روابط ریاضی سرعت موج برشی و نتایج آزمون نفوذ استاندارد با رویکرد آمار بیزین

نوع مقاله : Articles

نویسندگان

1 گروه مهندسی عمران، واحد اهواز، دانشگاه آزاد اسلامی، اهواز، ایران

2 گروه مهندسی عمران، واحد شوشتر، دانشگاه آزاد اسلامی، شوشتر، ایران

چکیده

سرعت موج برشی به‌عنوان یکی از مهم‌ترین پارامترهای ژئوفیزیکی می‌باشد که پاسخ لرزه‌ای سایت‌ها در قالب آن بیان می‌شود. این پارامتر لرزه‌ای اطلاعات ارزشمندی راجع به ساختگاه پروژه را می‌دهد اما ازآنجایی‌که آزمایش‌های ژئوفیزیکی معمولاً گران و زمان‌بر هستند استفاده از روش‌های غیر مستقیم به‌منظور کاهش هزینه‌ها رو به افزایش است. تحقیقات زیادی دراین‌باره در مناطق مختلف جهان انجام شده است که در اکثریت آنها از دو معادله توانی ساده و توانی چندگانه جهت استخراج معادلات استفاده کرده‌اند. اما این تحقیق با استفاده از توابع جدید تعریف شده توسط آمار بیزین نشان داده است که معادلاتی با اعتباری به‌مراتب بیشتر از روابط موجود در سوابق تحقیق می‌توانند جهت تخمین سرعت موج برشی به‌کار گرفته شوند.

کلیدواژه‌ها


  1. Hanumantharao, C. and Ramana, G. (2008) Dynamic soil properties for microzonation of Delhi, India. Journal of earth system science, 117(2), 719-730.
  2. Choi, Y. and Stewart, J.P. (2005) Nonlinear site amplification as function of 30 m shear wave velocity. Earthquake Spectra, 21(1), 1-30.
  3. Andrus, R.D., Fairbanks, C.D., Zhang, J., Camp, W.M., Casey, T.J., Cleary, T.J., Wright, W.B. (2006) Shear-wave velocity and seismic response of near-surface sediments in Charleston, South Carolina. Bulletin of the Seismological Society of America, 96(5), 1897-1914.
  4. Esfehanizadeh, M., Nabizadeh, F. and Yazarloo, R. (2015) Correlation between standard penetration (NSPT) and shear wave velocity (VS) for young coastal sands of the Caspian Sea. Arabian Journal of Geosciences, 8(9), 7333-7341.
  5. Rollins, K.M., Diehl, N.B. and Weaver, T.J. (1998) Implications of V s-BPT (N 1) 6 0 Correlations for Liquefaction Assessment in Gravels. Geotechnical Earthquake Engineering and Soil Dynamics III, ASCE.
  6. Thaker, T. and Rao, K. (2011) Development of statistical correlations between shear wave velocity and penetration resistance using MASW technique. Geo-Innovation Addressing Global Challenges, Toronto, Ontario, Canada,.
  7. Nazarian, S. (1984) In situ shear wave velocities from spectral analysis of surface wave. Proceedings of 8th Conference on Earthquake Engineering, San Francisco.
  8. Jafari, M.K., Shafiee, A. and Razmkhah, A. (2002) Dynamic properties of fine grained soils in south of Tehran. Journal of Seismology and Earthquake Engineering, 4(1), 25-35.
  9. Hasancebi, N. and Ulusay, R. (2007) Empirical correlations between shear wave velocity and penetration resistance for ground shaking assessments. Bulletin of Engineering Geology and the Environment, 66(2), 203-213.
  10. Fauzi, A., Irsyam, M. and Fauzi, U.J. (2014) Empirical correlation of shear wave velocity and N-SPT value for Jakarta. Int. J. GEOMATE, 7(1), 980-984.
  11. Brown, L.T., Boore, D.M. and Stokoe, K.H. (2002) Comparison of shear-wave slowness profiles at 10 strong-motion sites from noninvasive SASW measurements and measurements made in boreholes. Bulletin of the Seismological Society of America, 92(8), 3116-3133.
  12. Andrus, R., Zhang, J., Ellis, B.S., Juang, C.H. (2003) Guide for Estimating the Dynamic Properties of South Carolina Soils for Ground Response Analysis.
  13. Silva, W., Wong, I., Siegel, T., Gregor, N., Darragh, R., Lee, R. (2003) Ground motion and liquefaction simulation of the 1886 Charleston, South Carolina, earthquake. Bulletin of the Seismological Society of America, 93(6), 2717-2736.
  14. Mohanan, N.P., et al. (2006) Electronic Files of Shear Wave Velocity and Cone Penetration Test Measurements from the Greater Charleston Area, South Carolina. Data Rep. to the US Geological Survey, Award No. 05HQGR0037.
  15. Seed, H. and Idriss, I. (1981) Evaluation of liquefaction potential sand deposits based on observation of performance in previous earthquakes. ASCE National Convention (MO).
  16. Lee, S.H.H. (1990) Regression models of shear wave velocities in Taipei basin. Journal of the Chinese Institute of Engineers, 13(5), 519-532.
  17. Jafari, M., Asghari, A., and Rahmani, I. (1997) Empirical correlation between shear wave velocity (Vs) and SPT-N value for south of Tehran soils. Proc. 4th International Conference on Civil Engineering.
  18. Ohta, Y. and Goto, N. (1978) Empirical shear wave velocity equations in terms of characteristic soil indexes. Earthquake Engineering & Structural Dynamics, 6(2), 167-187.
  19. Brandenberg, S.J., Bellana, N. and Shantz, T. (2010) Shear wave velocity as function of standard penetration test resistance and vertical effective stress at California bridge sites. Soil Dynamics and Earthquake Engineering, 30(10), 1026-1035.
  20. Ghorbani, A., Jafarian, Y. and Maghsoudi, M.S. (2012) Estimating shear wave velocity of soil deposits using polynomial neural networks: Application to liquefaction. Computers & Geosciences, 44, 86-94.
  21. Standard, A. (2008) Standard test method for standard penetration test (SPT) and split-barrel sampling of soils.
  22. Lee, S. (1988) Regression model for shear wave velocity of sandy and silty soils of Taipei basin. Proc. of the CCNAA-AIT Joint Seminar/Workshop on Research and Application for Multiple Hazards Mitigation, Taipei.
  23. Der Kiureghian, A. (1999) A Bayesian framework for fragility assessment. Proc., ICASP8 Conference.
  24. Brezger, A. and Lang, S. (2006) Generalized structured additive regression based on Bayesian P-splines. Computational Statistics & Data Analysis, 50(4), 967-991.
  25. Brezger, A. and Lang, S. (2008) Simultaneous probability statements for Bayesian P-splines. Statistical Modelling, 8(2), 141-168.