ارزیابی رفتار دینامیکی ماسه‌های کربناتی

نوع مقاله : Articles

نویسندگان

1 پژوهشکده مهندسی ژئوتکنیک، پژوهشگاه بین المللی زلزله شناسی و مهندسی زلزله

2 گروه مهندسی عمران، دانشکده فنی و مهندسی، دانشگاه شهرکرد

چکیده

ارزیابی دقیق منحنی­های رفتار دینامیکی خاک­ها از مراحل مهم و اساسی در حل مسائل ژئوتکنیک لرزه‌ای از جمله تحلیل پاسخ زمین می­باشند. مطالعات بسیاری جهت ارزیابی این منحنی­ها که شامل منحنی‌های سختی برشی و نسبت میرایی هستند، صورت گرفته است. اکثر این مطالعات بر روی خاک­های سیلیکاتی انجام پذیرفته است. مطالعات زمین­شناسی حاکی از آن است که بخش وسیعی از سطح زمین در نواحی گرمسیری از جمله نواحی جنوبی کشور ایران پوشیده از خاک­های کربناتی است. از این‌رو بررسی رفتار خاک­های کربناتی تحت بارهای دینامیکی از اهمیت بالایی برخوردار است. در این مقاله مطالعات تحلیلی، تجربی و آماری انجام شده بر روی منحنی­های رفتار دینامیکی خاک­ها بررسی و اثر پارامترهای مختلف بر این منحنی­ها شرح داده می­شود. در ادامه مطالعات آزمایشگاهی چرخه­ای و دینامیکی انجام شده در فشارهای محدودکننده‌ی میانگین 40، 200 و 400 کیلو پاسکال و دانسیته­ی نسبی 50 و 80 درصد بر روی ماسه کربناتی بوشهر گزارش می­شوند. در نهایت پارامترهای دینامیکی حاصل از آزمون‌های آزمایشگاهی این تحقیق با مطالعات گذشته مقایسه شد که نتایج حاصل نشان از تفاوت رفتاری ماسه­ی کربناتی بوشهر با الگوهای مبتنی بر ماسه­های سیلیکاتی داشته است.

کلیدواژه‌ها


  1. Kramer, S.L. (1996) Geotechnical Earthquake Engineering. Delhi (India): Pearson Education Ptd. Ltd. [Reprinted 2003].
  2. Ishihara, K. (1996) Soil Behavior in Earthquake Geotechnics. Oxford Science Publications, 350 p.
  3. Senetakis, K., Anastasiadis, A., Pitilakis, K., and Coop, M.R. (2013) The dynamics of a pumice granular soil in dry state under isotropic resonant column testing. Soil Dynamics and Earthquake Engineering, 45, 70-79.
  4. Iwasaki, T., Tatsuoka F., and Takagi, Y. (1978) Shear moduli of sands under cyclic torsional shear loading. Soils and Foundations, 18, 39-56.
  5. Kokusho, T. (1980) Cyclic triaxial test of dynamic soil properties for wide strain range. Soils and Foundations, 20, 45-60.
  6. Kokusho, T., Yoshida, Y., and Esashi, Y. (1982) Dynamic soil properties of soft clay for wide strain range. Soils and Foundations, 22, 1-18.
  7. Sun, J.I., Golesorkhi, R., and Seed, H.B. (1988) Dynamic Moduli and Damping Ratios for Cohesive Soils. Report, UCB/EERC-88/15, University of California at Berkeley, 48 p.
  8. Vucetic, M. and Dobry, R. (1991) Effect of soil plasticity on cyclic response. Journal of Geotechnical Engineering, 117, 89-107.
  9. Idriss, I.M. (1990) Response of soft soil sites during earthquakes. Proceedings, H. Bolton Seed Memorial Symposium, 2, 273-289.
  10. Kim, Y.S., Ha, T.G., Choi, J.J., and Chung, C.K. (2007) The influence of dynamic properties of ground soil on vibration characteristics of rigid body on sand ground. KSCE Journal of Civil Engineering, 11, 81-91.
  11. Iwasaki, I. and Tatsuoka, F. (1977) Effects of grain size and grading on dynamic shear modulus of sands. Soils and Foundations, 38, 19-35.
  12. Rollins, K.M., Evans, M.D., Diehl, N.B., and Daily, W.D. (1998) Shear modulus and damping relationships for gravels. Journal of geotechnical and Geoenvironmental Engineering, 124, 396-405.
  13. Ishibashi, I. and Zhang, X. (1993) Unified dynamic shear moduli and damping ratios of sand and clay. Soils and Foundations, 33, 182-191.
  14. Brennan, A.J., Thusyanthan, N.I., and Madabhushi, S.P.G. (2005) Evaluation of shear modulus and damping in dynamic centrifuge tests. Journal of Geotechnical and Geoenvironmental Engineering, 131, 1488-1497.
  15. Hardin, B.O. and Drnevich, V.P. (1972) Shear modulus and damping in soils: design equations and curves. Journal of Soil Mechanics and Foundation Engineering Division, 98, 667-692.
  16. Li, Z., Escoffier, S., and Kotronis, P. (2013) Using centrifuge tests data to identify the dynamic soil properties: Application to Fontainebleau sand. Soil Dynamics and Earthquake Engineering, 52, 77-87.
  17. Oztoprak, S. and Bolton, M.D. (2013) Stiffness of sands through a laboratory test database. Geotechnique, 63, 54-70.
  18. Vardanega, P.J., Bolton, M.D. (2013) Stiffness of clays and silts: normalizing shear modulus and shear strain. Journal of Geotechnical and Geoenvironmental Engineering, 139, 1575-1589.
  19. Jafarian, Y., Haddad, A. and Javdanian, H. (2014) Predictive model for normalized shear modulus of cohesive soils. Acta Geodynamica et Geomaterialia, 11, 89-100.
  20. Javdanian, H., Jafarian, Y., and Haddad, A. (2015) Predicting damping ratio of fine-grained soils using soft computing methodology. Arabian Journal of Geosciences, 8, 3959-3969.
  21. Javdanian, H., Haddad, A., and Jafarian, Y. (2015) Evaluation of dynamic behavior of fine-grained soils using group method of data handling. Transportation Infrastructure Engineering, 1(3), 77-92.
  22. Senetakis, K., Anastasiadis, A. and Pitilakis, K. (2012) The small-strain shear modulus and damping ratio of quartz and volcanic sands. Geotechnical Testing Journal, 35, 964-980.
  23. Holmes, A. (1978) Principles of Physical Geology. Sunbury-on-Thames, Nelson, London, 730 p.
  24. Coop, M.R. and Airey, D.W. (2003) ‘Carbonate sands.’ In: Characterization and engineering properties of natural soils, Tan, T.S., Phoon, K.K., Hight, D.W., and Leroueil, S. (eds), 1049-1086.
  25. Coop, M.R., Sorensen, K.K., Freitas, T.B., and Georgoutsos, G. (2004) Particle breakage during shearing of a carbonate sand. Geotechnique, 54, 157-163.
  26. Sharma, S.S. and Fahey, M. (2004) Deformation characteristics of two cemented calcareous soils. Canadian Geotechnical Journal, 41, 1139-1151.
  27. Lenart, S. (2006) Deformation characteristics of lacustrine carbonate silt in the Julian Alps. Soil Dynamics and Earthquake Engineering, 26, 131-142.
  28. Brandes, H.G. (2011) Simple shear behavior of calcareous and quartz sands. Geotechnical and Geological Engineering, 29, 113-126.
  29. Jewell, R.J. (1993) An Introduction to Calcareous Sediments. Research Report No. G1075, Department of Civil Engineering, The University of Western Australia, 45 p.
  30. Hassanlourad, M., Salehzadeh, H., and Shahnazari, H. (2008) Dilation and particle breakage effects on the shear strength of calcareous sands based on energy aspects. International Journal of Civil Engineering, 6, 108-119.
  31. Hassanlourad, M., Salehzadeh, H., and Shahnazari, H. (2011) Undrained triaxial shear behavior of grouted carbonate sands. International Journal of Civil Engineering, 9, 307-314.
  32. Dehnavi, Y., Shahnazari, H., Salehzadeh, H., and Rezvani, R. (2010) Compressibility and undrained behavior of Hormuz calcareous sand. Electronic Journal of Geotechnical Engineering, 15, 1684-1702.
  33. Shahnazari, H. and Rezvani, R. (2013) Effective parameters for the particle breakage of calcareous sands: An experimental study. Engineering Geology, 159, 98-105.
  34. Shahnazari, H., Salehzadeh, H., Rezvani, R., and Dehnavi, Y. (2014) The effect of shape and stiffness of originally different marine soil grains on their contractive and dilative behavior. KSCE Journal of Civil Engineering, 18, 975-983.
  35. Jafarian, Y., Haddad, A., and Javdanian, H. (2016) Estimating the shearing modulus of Boushehr calcareous sand using resonant column and cyclic triaxial experiments. Modares Civil Engineering Journal, 15(4), 9-19 (in Persian).
  36. Jafarian, Y., Haddad, A., and Javdanian, H. (2015) Comparing the shear stiffness of calcareous and silicate sands under dynamic and cyclic straining. 7th International Conference of Seismology and Earthquake Engineering (SEE7), 18 May, Tehran, Iran (in Persian).
  37. Seed, H.B. and Idriss, I.M. (1970) Soil Moduli and Damping Factors for Dynamic Response Analyses. Report No. EERC-70-10, Earthquake Engineering Research Center, University of California, Berkeley, USA.
  38. Seed, H.B., Wong, R.T., Idriss, I.M. and Tokimatsu, K. (1986) Moduli and damping factors for dynamic analyses of cohesionless soils. Journal of the Soil Mechanics and Foundations Division, 112, 1016-1032