جواب تحلیلی برای آبرفت اشباع یک‌بعدی تحت اثر مؤلفه قائم زلزله

نوع مقاله : Articles

نویسندگان

گروه مهندسی عمران، دانشگاه صنعتی قم، ایران

چکیده

روش‌های عددی بسیاری برای معادلات محیط کشسان متخلخل ارائه شده است که برای آبرفت‌های اشباع قابل استفاده است؛ اما تا کنون جواب تحلیلی دقیق برای چنین آبرفت‌هایی در حوزه زمان تحت اثر شرایط لرزه‌ای حتی برای حالت یک‌بعدی ارائه نشده است. در این مقاله یک روش تحلیلی برای پاسخ لرزه‌ای آبرفت‌های اشباع تحت اثر مؤلفه قائم زلزله ارائه می‌شود. اگر لایه‌های سطحی آبرفت و مرزهای آنها افقی باشند می‌توان آبرفت را به‌صورت یک ستون محصور شده مدل‌سازی نمود. آبرفت اشباع به‌صورت یک محیط کشسان متخلخل در نظر گرفته می‌شود. به همین دلیل از معادلات کشسان متخلخل تحت بارهای لرزه‌ای استفاده می‌شود. در محیط کشسان متخلخل تحت اثر امواج لرزه‌ای، تغییر مکان فاز جامد و فشار آب حفره‌ای توأمان تغییر می‌یابند و اثر متقابلی بر یکدیگر دارند. معادله دیفرانسیل حاکم که یک معادله هایپربولیک از مرتبه دوم است با استفاده از روش جداسازی متغیرها به دو معادله ارتعاش آزاد در زمان و معادله بسل در مکان تفکیک می‌شود. معادله بسل در مکان با استفاده از توابع بسل و معادله ارتعاش آزاد در زمان با استفاده از روش انتگرال‌گیری مستقیم نیومارک حل می‌شود. در جواب تحلیلی ارائه شده مودهای ارتعاش، شکل‌های مودی و فرکانس متناظر آنها به دست می‌آید. نتایج این تحقیق در مسائل انتشار امواج لرزه‌ای در آبرفت‌های اشباع کاربرد خواهد داشت. به‌منظور بررسی صحت جواب تحلیلی ارائه شده در تحقیق حاضر، با در نظر گرفتن یک مورد واقعی مقادیر شتاب ثبت شده در آبرفت کاملاً اشباع در هنگام زلزله با مقادیر محاسبه شده با روش تحلیلی مقایسه می‌شود. یک مثال عددی به‌منظور بررسی بیشتر جواب تحلیلی ارائه می‌شود. با حل مثال عددی با روش حاضر مشاهده می‌شود که فشار آب حفره‌ای محاسبه شده همان‌طور که انتظار می‌رود در آبرفت‌های با نفوذپذیری پایین مقدار بیشتری خواهد داشت. همچنین مشاهده می‌شود که عکس ضریب نفوذپذیری اثر میرایی مشابه ضریب میرایی در محاسبه شتاب دارد.

کلیدواژه‌ها


عنوان مقاله [English]

An Analytical Solution for Seismic Response of Saturated Soil Layer to Vertical Earthquake Excitation

نویسندگان [English]

  • Morteza Jiryaei Sharahi
  • Maryam Mousavi
Department of Civil Engineering, Qom University of Technology (QUT), Qom, Iran
چکیده [English]

Several analytical and numerical techniques have been developed for solving poroelastic governing equations; however, no closed-form solution in time domain for the general material case, even in simple one-dimensional geometry, has been yet introduced. Analytical solution for wave propagation in saturated porous media is limited and cannot be easily obtained for earthquake loading. The existence of such analytical solutions to simplified problems of seismic wave propagation is essential. In the present paper, a closed-form solution in time domain is obtained for saturated soil layer subjected to vertical component of earthquake acceleration. Saturated soil is assumed as a saturated poroelastic media and corresponding governing differential equations for earthquake loading are derived. In a poroelastic medium under the effect of seismic waves, solid phase displacement and pore pressure are coupledand interact with each other. If the ground surface and the boundaries between soil layers are horizontal, the lateral extent of the deposit has no influence on the response, and hence, the deposit can be considered as a one-dimensional confined column. The vibration modes, the modal shapes and their corresponding frequencies are obtained from the free vibration condition of the governing equation. By applying the method of separation of variables, the governing equation, which is a second order hyperbolicpartial differential equation, is separated into a Bessel equation in space and a single-degree-of-freedom vibration equation in time. The Bessel equation and the single-degree-of-freedom vibration equation are solved using the Bessel functions and Newmark's direct integration method, respectively. In order to examine the accuracy of the analytical response presented in this paper, acceleration values recorded in a saturated alluvial during one of the previous earthquakes are compared with the calculated values by the analytical method. A numerical example is presented to further analyze the analytical solution. The numerical example shows that a decrease in permeability has a damping effect on acceleration, whereas, amplifies the excessive pore pressure. The suggested solution can be used for dynamic analysis of wave propagation in saturated soils during earthquakes.

کلیدواژه‌ها [English]

  • Seismic Response
  • Saturated Alluvium
  • Poroelastic
  • Earthquake Vertical Component
  • analytical solution
  1. Biot, M.A. (1956) Theory of propagation of elastic waves in a fluid-saturated porous solid: I. Low-frequency range, II. Higher frequency range. J. Acoust. Soc. Am. 28, 168-191.
  2. Zienkiewicz, O.C. (1982) Basic formulation of static and dynamic behaviours of soil and other porous media. Applied Mathematics and Mechanics, 3(4), 457-468.
  3. Zienkiewicz, O.C., Chang, C.T., Bettess, P. (1980) Drained, undrained, consolidating and dynamic behaviour assumptions in soils. Geotechnique, 30(4), 385 –395.
  4. Zienkiewicz, O.C. and Shiomi, T. (1984) Dynamic behavior of saturated porous media, the generalized Biot formulation and its numerical solution. Int. J. Numer. Anal. Methods Geomech., 8, 71-96.
  5. Garg, S.K., Nayfeh, A.H., Good, A.J. (1974) Comperessional waves in fluid-saturated elastic porous media. J. Appl. Phys., 45, 1968-1974.
  6. Simon, B.R., Zienkiewicz, O.C., Paul, D.K. (1984) An analytical solution for the transient response of saturated porous elastic solids. Int. J. Numer. Anal. Methods Geomech. 8, 381-398.
  7. Hong, S.J., Sandhu, R.S., Wolfe, W.E. (1988) On Garg's solution of Biot's equations for wave propagation in a one-dimensional fluid-saturated elastic porous solid. Int. J. Numer. Anal. Methods Geomech., 12, 627-637.
  8. Cheng, A., Badmus, T., and Beskos, D. (1991) Integral Equation for Dynamic Poroelasticity in Frequency Domain with BEM Solution. J. Eng. Mech., 117, 1136–1157.
  9. De Boer, R., Ehlers, W., and Liu, Z. (1993) One-dimensional transient wave propagation in a fluid-saturated incompressible porous media. Arch. Appl. Mech., 63 59–72.
  10. Schanz, M. and Cheng, A.H.D. (2000) Transient wave propagation in a one-dimensional poroelastic column. Acta Mech., 145, 1-18.
  11. Kontoe, S., Christopoulos, A., and May, R. (2013) Site response analysis for vertical ground motion. Proc. of 4th ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering, Greece.
  12. Yang, J. and Sato, T. (2001) Analytical study of saturation effects on seismic vertical amplification of a soil layer. Geotechnique, 51(2), 161-165.
  13. Idriss, I.M. and Seed, H.B. (1968) Seismic Response of Horizontal Soil Layers. J. Soil Mech. Found. Div. ASCE 94 No. SM4, 1003-1031.
  14. Newmark, N.M. (1962) A method of computations for structural dynamics. Transactions ASCE 127, Part I, 1406-1435.
  15. Li, X.S., Shen, C.K. and Wang Z.L. (1998) Fully coupled inelastic site response analysis for 1986 Lotung. Journal of Geotechnical and Geoenvironmental Engineering, 124(7), 560-573.