بررسی آزمایشگاهی عملکرد فونداسیون‌های گهواره‌ای واقع شده بر روی خاک سیلت توسط آزمایش میز لرزه

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری ژئوتکنیک، گروه مهندسی عمران، واحد تبریز، دانشگاه آزاد اسلامی، تبریز، ایران

2 استاد، دانشکده مهندسی عمران، دانشگاه تبریز، تبریز، ایران

3 استادیار، گروه مهندسی عمران، واحد تبریز، دانشگاه آزاد اسلامی، تبریز، ایران

چکیده

پل‌های قدیمی عمدتاً برای بارگذاری ثقلی و با در نظر گرفتن جزئی بارهای لرزه‌ای یا جانبی طراحی شده‌اند که در برابر اثرات لرزه‌ای آسیب‌پذیر بوده‌اند. مثال‌های متعددی از خسارات وارده به المان‌های سازه‌های بزرگ روبنایی و سازه‌های زیرزمینی پل و در بعضی موارد ریزش کامل موجود می‌باشد. اخیراً، محققان مفهوم فونداسیون‌ گهواره‌ای را برای ستون-فونداسیون در پل‌ها پیشنهاد کرده‌اند. یک فونداسیون گهواره‌ای از گسیختگی خاک برای حفاظت از سازه در طول بارگذاری لرزه‌ای استفاده می‌کند. به این ترتیب، این فونداسیون می‌تواند به‌عنوان یک فیوز عمل کرده و تا حدی سیستم پل را از آسیب‌های جدی ناشی از زلزله ایزوله کند. تحقیقات پیشین عمدتاً بر روی رفتار فونداسیون‌های گهواره‌ای واقع شده بر روی خاک‌های ماسه‌ای متمرکز بوده‌اند و به‌صورت معدود از خاک‌های ماسه‌ای رس‌دار یا خاک رس نیز استفاده شده است، درحالی‌که توجه چندانی به عملکرد این نوع از پی‌ها در خاک‌های ریزدانه‌ غیر پلاستیک (سیلتی) نشده است. در این تحقیق عملکرد لرزه‌ای فونداسیون‌های گهواره‌ای واقع شده بر روی خاک‌های سیلتی با استفاده از مدل‌سازی فیزیکی در مقیاس کوچک و توسط میز لرزه مورد بررسی قرارگرفته است. بدین‌منظور، هشت آزمایش میز لرزه با تغییر پارامترهای نسبت سطح تماس بحرانی و فرکانس ورودی ارزیابی شده است. نتایج آزمایش‌ها نشان می‌دهد که نشست‌ فونداسیون و دوران سازه، پارامترهای وابسته به نرخ بوده و با کاهش فرکانس حرکت ورودی افزایش می‌یابند. علاوه بر این، نشان داده شده است که افزایش نسبت سطح تماس بحرانی منجر به کاهش نشست‌ها و افزایش دوران سازه می‌شود.

کلیدواژه‌ها

موضوعات


Algie, T.B., Pender, M.J., Orense, R.P., & Wotherspoon, L.M. (2010). Dynamic field testing of shallow foundations subject to rocking. Earthquake Prone Building: How Ready Are We, 26-28.
Allmond, J.D., & Kutter, B.L. (2014). Design considerations for rocking foundations on unattached piles. Journal of Geotechnical and Geoenvironmental Engineering140(10), 04014058.
Anastasopoulos, I., Drosos, V., & Antonaki, N. (2015). Three‐storey building retrofit: rocking isolation versus conventional design. Earthquake Engineering & Structural Dynamics44(8), 1235-1254.
Anastasopoulos, I., Gazetas, G., Loli, M., Apostolou, M., & Gerolymos, N. (2010). Soil failure can be used for seismic protection of structures. Bulletin of Earthquake Engineering8(2), 309-326.
Anastasopoulos, I., Gelagoti, F., Kourkoulis, R., & Gazetas, G. (2011). Simplified constitutive model for simulation of cyclic response of shallow foundations: validation against laboratory tests. Journal of Geotechnical and Geoenvironmental Engineering, 137(12), 1154-1168.
Anastasopoulos, I., Gelagoti, F., Spyridaki, A., Sideri, J., & Gazetas, G. (2014). Seismic rocking isolation of an asymmetric frame on spread footings. Journal of Geotechnical and Geoenvironmental Engineering, 140(1), 133-151.
Anastasopoulos, I., Loli, M., Georgarakos, T., & Drosos, V. (2013). Shaking table testing of rocking—isolated bridge pier on sand. Journal of Earthquake Engineering, 17(1), 1-32.
Anastasopoulos, I., Loli, M., Georgarakos, T., & Drosos, V. (2013). Shaking table testing of rocking—isolated bridge pier on sand. Journal of Earthquake Engineering, 17(1), 1-32.
Arabpanahan, M., Mirghaderi, S.R., Hosseini, A., & Ghalandarzadeh, A. (2021). Dynamic rocking response of “SDOF-embedded foundation systems using shake table experiments. Soil Dynamics and Earthquake Engineering, 140, 106431.
Asli, M.S., Hosseini, S.M.M.M., & Jahanirad, A. (2018). Effect of soil reinforcement on rocking isolation potential of high-rise bridge foundations. Soil Dynamics and Earthquake Engineering, 115, 142-155.
Behnamfar, F., Mirhosseini, S.M., & Alibabaei, H. (2017). Seismic behavior of structures considering uplift and soil–structure interaction. Advances in Structural Engineering, 20(11), 1712-1726.
Bolisetti, C., Whittaker, A.S., & Coleman, J.L. (2018). Linear and nonlinear soil-structure interaction analysis of buildings and safety-related nuclear structures.       Soil Dynamics and Earthquake Engineering107,        218-233.
Chaudhary, M.T.A. (2016). Effect of soil-foundation-structure interaction and pier column non-linearity on seismic response of bridges supported on shallow foundations. Australian Journal of Structural Engineering, 17(1), 67-86.
Esmatkhah Irani, A., Azadi, A., Nikbakht, M., Azarafza, M., Hajialilue Bonab, M., & Behrooz Sarand, F. (2022). GIS-based settlement risk assessment and    its effect on surface structures: a case study for the Tabriz Metro—line 1. Geotechnical and Geological Engineering, 40(10), 5081-5102.
Esmatkhah Irani, A., Hajialilue-Bonab, M., Behrooz Sarand, F., & Katebi, H. (2021). Behavioral evaluation of soil-based rocking foundations against seismic loading: A review study. Geotechnical Geology, 17(1), 455-463.
Gajan, S., & Kutter, B.L. (2008). Capacity, settlement, and energy dissipation of shallow footings subjected    to rocking. Journal of Geotechnical and Geoenvironmental Engineering, 134(8), 1129-1141.
Gajan, S., Kutter, B.L., Phalen, J.D., Hutchinson, T.C., & Martin, G.R. (2005). Centrifuge modeling of       load-deformation behavior of rocking shallow foundations. Soil Dynamics and Earthquake Engineering, 25(7-10), 773-783.
Gajan, S., Soundararajan, S., Yang, M., & Akchurin, D. (2021). Effects of rocking coefficient and critical contact area ratio on the performance of rocking foundations from centrifuge and shake table experimental results. Soil Dynamics and Earthquake Engineering, 141, 106502.
Gazetas, G. (2015). 4th Ishihara lecture: soil–foundation–structure systems beyond conventional seismic failure thresholds. Soil Dynamics and Earthquake Engineering68, 23-39.
Gazetas, G., Anastasopoulos, I., Adamidis, O., & Kontoroupi, T. (2013). Nonlinear rocking stiffness of foundations. Soil Dynamics and Earthquake Engineering, 47, 83-91.
Guan, Z., Chen, X., & Li, J. (2018). Experimental investigation of the seismic performance of bridge models with conventional and rocking pile group foundations. Engineering Structures168, 889-902.
Hachem, M.M., Moehle, J.P., & Mahin, S.A. (2003). Performance of Circular Reinforced Concrete Bridge Columns under Bidirectional Earthquake Loading. Berkeley, CA: Pacific Earthquake Engineering Research Center.
Hakhamaneshi, M. (2014). Rocking Foundations for Building Systems-Effect of Footing Shape, Soil Environment, Embedment and Normalized Moment-to-Shear Ratio. University of California, Davis.
Hakhamaneshi, M., & Kutter, B.L. (2016). Effect of footing shape and embedment on the settlement, recentering, and energy dissipation of shallow footings subjected to rocking. Journal of Geotechnical and Geoenvironmental Engineering, 142(12), 04016070.
Housner, G.W. (1963). The behavior of inverted pendulum structures during earthquakes. Bulletin of   the Seismological Society of America, 53(2), 403-417.
Iai, S. (1989). Similitude for shaking table tests on    soil-structure-fluid model in 1g gravitational field.   Soils and Foundations, 29(1), 105-118.
Jeong, H., Sakai, J., Mahin, S.A. (2008). Shaking table tests and numerical investigation of self-centering reinforced concrete bridge columns, Technical Report PEER 2008/06, Pacific Earthquake Engineering ResearchCenter, University of California, Berkeley, CA.
Kawashima, K., & Nagai, T. (2006, October). Effectiveness of rocking seismic isolation on bridges. In 4th International Conference on Earthquake Engineering, 86, 12-13. National Center for Research on Earthquake Engineering of Taiwan.
Khezri, A., Mir Mohammad Hosseini, S.M., Moradi, M., Maleki, M., & Rahmani, F. (2022). An experimental study on the rocking behavior of circular and square footings under slow-cyclic loading. Innovative Infrastructure Solutions, 7(3), 1-18.
Ko, K.W., Ha, J.G., Park, H.J., & Kim, D.S. (2019). Centrifuge modeling of improved design for rocking foundation using short piles. Journal of Geotechnical and Geoenvironmental Engineering, 145(8), 04019031.
Kokkali, P., Abdoun, T., & Anastasopoulos, I. (2015). Centrifuge modeling of rocking foundations on improved soil. Journal of Geotechnical and Geoenvironmental Engineering, 141(10), 04015041.
Loli, M., Knappett, J.A., Brown, M.J., Anastasopoulos, I., & Gazetas, G. (2014). Centrifuge modeling of rocking‐isolated inelastic RC bridge piers. Earthquake Engineering & Structural Dynamics, 43(15), 2341-2359.
Mayoral, J.M., Hutchinson, T.C., & Franke, K.W. (2017). Geotechnical engineering reconnaissance of  the 19 September 2017 Mw 7.1 Puebla‐Mexico City earthquake. Geotechnical Extreme Events Reconnaissance Association, Report no. GEER-055A (16 February 2017).
Raheem, S.E.A., & Hayashikawa, T. (2013). Soil-structure interaction modeling effects on seismic response of cable-stayed bridge tower. International Journal of Advanced Structural Engineering, 5(1),       1-17.
Sakai, J., Mahin, A.S., & Espinoza, A. (2006). Earthquake Simulation Tests on Reducing Residual Displacements of Reinforced Concrete Bridge Columns, PEER Report. University of California, Berkeley.
Sharma, K., & Deng, L. (2019). Characterization of rocking shallow foundations on cohesive soil using field snap-back tests. Journal of Geotechnical and Geoenvironmental Engineering, 145(9), 04019058.
Sharma, K., & Deng, L. (2020). Field testing of rocking foundations in cohesive soil: cyclic performance and footing mechanical response. Canadian Geotechnical Journal, 57(6), 828-839.
Tohidvand, H.R., Hajialilue-Bonab, M., Katebi, H., Nikvand, V., & Ebrahimi-Asl, M. (2022) Monotonic and post cyclic behavior of sands under different strain paths in direct simple shear tests, Engineering Geology, 302, p. 106639.
Yashinsky, M., & Karshenas, M.J. (2003). Fundamentals of Seismic Protection for Bridges. National Information Centre of Earthquake Engineering.