اثر تنش کولمب بر مدل های وابسته به زمان احتمال وقوع زلزله در زاگرس

نوع مقاله : Articles

نویسندگان

1 مؤسسه آموزش عالی آل‌طه، تهران

2 پژوهشکده زلزله شناسی، پژوهشگاه بین‌المللی زلزله‌شناسی و مهندسی زلزله، تهران

چکیده

به دلیل برهم‌کنش چشمه های لرزه زا، وقوع یک زلزله احتمال وقوع زلزله های آینده را در منطقه تحت تأثیر قرار می دهد. در این مطالعه احتمال وقوع زلزله های با بزرگای Mw≥5.8 بر اساس مدل های وابسته به زمان بی پی تی و ویبل برای دوره 10، 30 و 50 ساله در بخشی از منطقه زاگرس ارزیابی شده است. ابتدا تغییرات تنش کولمب ناشی از برهم-کنش زمین لرزه ها در هر گسل محاسبه شده است. سپس اثر این تغییر تنش در احتمال وقوع زلزله های مشخصه5 برحسب هر دو اثر دائمی (تغییر زمان) و گذرا (نرخ- حالت) تغییرات تنش کولمب ارزیابی شده است. نتایج نشان می دهد که مدل ویبل احتمال بالایی از وقوع زلزله را نسبت به مدل بی پی تی در منطقه تخمین زده است. در نظر گرفتن اثرات تغییر تنش زلزله ها، موجب تغییر در نتایج احتمالات شرطی به‌دست‌آمده از هر دو مدل بی پی تی و ویبل شد، به‌طوری‌که در برخی چشمه های لرزه زا موجب افزایش و در برخی دیگر موجب کاهش نتایج احتمال شد. بیشترین احتمال به‌دست‌آمده مربوط به گسل کازرون است که این امر نشان دهنده‌ی فعالیت لرزه ای بالای این گسل است.

کلیدواژه‌ها


  1. Console, R., Falcone, G., Karakostas, V., Murru, M., Papadimitriou, E., and Rhoades, D. (2013) Renewal models and coseismic stress transfer in the Corinth Gulf, Greece, fault system. Journal of Geophysical Research: Solid Earth, 118(7), 3655-3673.
  2. Asayesh, B.M. and Hamzehloo, H. (2015) The Coulomb Stress Changes Due to Rigan Earthquakes and their Aftershocks. Bulletin of Earthquake Science and Engineering, 2(2), 1-10 (in Persian).
  3. Nouri, B., Hashemi, S.N., Asayesh, B.M. (2017) Study of the seismicity rate and Coulomb stress changes associated with the April 9th, 2013 Kaki-Shonbe earthquake (Mw=6.3) and the spatial distribution of aftershocks. Earth and Space Physics, 43(2), 339-353 (in Persian).
  4. Sorkhvandi, S., Zafarani, H. and Ghalandarzadeh, A. (2016) Effect of Coulomb Stress Changes on Time Dependent Model in East of Iran. Bulletin of Earthquake Science and Engineering, 2(4), 1-10 (in Persian).
  5. King, G.C.P., Stein, R.S., and Lin, J. (1994) Static stress changes and the triggering earthquakes. Bulletin of the Seismological Society of America, 84(3), 935-953.
  6. Console, R., Murru, M. and Falcone, G. (2010) Perturbation of earthquake probability for interacting faults by static Coulomb stress changes. Journal of Seismology, 14(1), 67-77.
  7. Parsons, T. (2004) Recalculated probability of M≥7 earthquakes beneath the Sea of Marmara, Turkey. Journal of Geophysical Research, 109(B5), 1-21.
  8. Wesnousky, S.G., Scholz, C.H., Shimazaki, K., and Matsuda, T. (1984) Integration of geological and seismological data for the analysis of seismic hazard: A case study of Japan. Bulletin of the Seismological Society of America, 74(2), 687-708.
  9. Nishenko, S.P., and Buland, R. (1987) A generic recurrence interval distribution for earthquake forecasting. Bulletin of the Seismological Society of America, 77(4), 1382-1399.
  10. Papazachos, B.C. (1992) A time and magnitude predictable model for generation of shallow earthquakes in the Aegean area. Pure and Applied Geophysics, 138(2), 287-308.
  11. Boschi, E., Gasperini, P., and Mulargia, F. (1995) Forecasting where larger crustal earthquakes are likely to occur in Italy in the near future. Bulletin of the Seismological Society of America, 85, 1475-1482.
  12. Zafarani, H., and Ghafoori, S.M.M. (2013) Probabilistic Assessment of Strong Earthquake Recurrence in the Iranian Plateau. Journal of Earthquake Engineering, 17(3), 449-467.
  13. Weibull, W. (1951) A statistical distribution function of wide application. Journal of Applied Mechanics, 18(3), 293-297.
  14. Meeker, W.Q. and Escobar, L.A. (1991) Statistical Methods for Reliability Data Using SAS Software. John Wiley and Sons, New York.
  15. Rikitake, T. (1982) Earthquake Forecasting and Warning. D. Reidel, Dordrecht, The Netherlands.
  16. Yakovlev, G., Turcotte, D.L., Rundle, J.B., and Rundle, P.B. (2006) Simulation-based earthquake recurrence times on the San Andreas fault system. Bulletin of the Seismological Society of America, 96(6), 1995-2007.
  17. Matthews, M.V., Ellsworth, W.L. and Reasenberg, P.A. (2002) A Brownian model for recurrent earthquakes. Bulletin of the Seismological Society of America, 92(6), 2233-2250.
  18. Kagan, Y.Y. and Knopoff, L. (1987) Random stress and earthquake statistics: time dependence. Geophysical Journal of the Royal Astronomical Society, 88(3), 723-731.
  19. Console, R., Murru, M., Falcone, G. and Catalli, F. (2008) Stress interaction effect on the occurrence probability of characteristic earthquakes in Central Apennines. Journal of Geophysical Research, 113(B08313).
  20. Toda, S. (1998) Stress transferred by the 1995 Mw=6.9 Kobe, Japan, shock: Effect on aftershocks and future earthquake probabilities. Journal of Geophysical Research, 103(B10), 24543-24565.
  21. Stein, R., Barka, A., and Dieterich, J. (1997) Progressive failure on the North Anatolian fault since 1939 by earthquake stress triggering. Geophysical Journal International, 128(3), 594-604.
  22. Akinci, A., Murru, M., Consol, R., Falcone, G. and Pussi, S. (2014) Implications of earthquake recurrence models to the seismic hazard estimates in the marmara region, turkey. Second European Conference on Earthquake Engineering and Seismology, Istanbul, Aug 25-29.
  23. Berberian, M., Petrie, C.A., Potts, D.T., Asghari Chaverdi, A., Dusting, A., Sardari Zarchi, A., Weeks, L., Ghassemi, P., and Noruzi, R. (2014) Archaeoseismicity of the mounds and monuments along the kazerun fault (western Zagros, sw Iranian plateau) since the chalcolithic period. Iranica Antiqua, XLIX, doi: 10.2143/IA.49.0.3009238.
  24. Baker, C., Jackson, J. and Priestley, K. (1993) Earthquakes on the Kazerun Line in the Zagros Mountains of Iran: strike-slip faulting within a fold and thrust belt. Geophysical Journal International, 115(1), 41-61.
  25. Centroid Moment Tensor catalogue. Available online: www.globalcmt.org/CMTsearch.html [2016, March 3].
  26. Elliott, J.R., Bergman, E.A., Copley, A.C., Ghods, A.R., Nissen, E.K., Oveisi, B., Tatar, M., Walters, R.J. and Yamini-Fard, F. (2015) The 2013 Mw 6.2 Khaki-Shonbe (Iran) Earthquake: insights 1 into seismic and aseismic shortening of the Zagros 2 sedimentary cover. Earth and space science, 2, 435-471, doi:10.1002/2015EA000098.
  27. Talebian, M. and Jackson, J. (2004) A reappraisal of earthquake focal mechanisms and active shortening in the Zagros mountains of Iran. Geophysical Journal International, 156(3), 506-526.
  28. Maggi, A., Jackson, J.A., Priestley, K. and Baker, C. (2000a) A re-assessment of focal depth distributions in southern Iran, the Tien Shan and northern India: do earthquakes really occur in the continental mantle? Geophysical Journal International, 143(3), 629-661.
  29. Ni, J. and Barazangi, M. (1986) Seismotectonics of the Zagros continental collision zone and a comparison with the Himalayas. Journal of Geophysical Research, 91(B8), 8205-8218.
  30. Wells, D.L. and Coppersmith, K.J. (1994) New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bulletin of the Seismological Society of America, 84(28), 974-1002.
  31. Khodaverdian, A., Zafarani, H. and Rahimian, M. (2015a) Long term Fault slip rates, distributed deformation rates and forecast of seismicity in the Iranian Plateau. Tectonics, 34(10), 2190-2220.
  32. Gardner, J.K., and Knopoff, L. (1974) Is the sequence of earthquakes in southern California, with aftershocks removed, poissonian? Bulletin of the Seismological Society of America, 64(5), 1363-1367.
  33. Field, E.H., Johnson, D.D. and Dolan, J.F. (1999) A mutually consistent seismic-hazard source model for Southern California. Bulletin of the Seismological Society of America, 89(3), 559-578.