ارائه معیارهایی برای تعیین سطوح عملکرد لرزه‌ای سازه‌های فولادی با سیستم باربر جانبی دوگانه با تلفیق شاخص خسارت و تحلیل دینامیکی فزاینده

نوع مقاله : Articles

نویسندگان

1 دانشکده مهندسی عمران و محیط‌زیست، دانشگاه تربیت مدرس، تهران، ایران

2 گروه مهندسی عمران، دانشکده فنی مهندسی، دانشگاه اراک، اراک، ایران

چکیده

در طراحی و ارزیابی سازه‌ها بر اساس عملکرد، شناسایی سطوح عملکرد سازه در سطوح خطر لرزه‌ای مشخص از اهمیت ویژه‌ای برخوردار است. در ارزیابی عملکرد لرزه‌ای سازه‌های فولادی با سیستم باربر جانبی دوگانه متشکل از قاب خمشی و مهاربندهای همگرا با تحلیل دینامیکی فزاینده، معیارهای مقبول و پذیرفته شده‌ای جهت تعیین سطوح عملکرد وجود ندارد. در این مقاله معیارهای مناسب و ساده‌ای جهت تعیین سطوح عملکرد سازه‌های فولادی با این سیستم سازه‌ای پیشنهاد گردیده است. بدین‌منظور متوسط مقادیر شاخص خسارت یک سازه‌ی مرجع با سیستم قاب خمشی در سطوح عملکرد تعیین شده با استفاده از روش راهنمای FEMA 350 محاسبه و بر مبنای این مقادیر سطوح عملکرد 22 سازه فولادی با سیستم دوگانه با حالات مختلف نامنظمی غیر هندسی در امتداد ارتفاع با تحلیل دینامیکی فزاینده تعیین شده است. بر اساس میانگین ظرفیت تغییر مکان نسبی بین طبقه‌ای در سطوح عملکرد، معیارهای مناسب و ساده‌ای جهت تعیین سطوح عملکرد سیستم سازه‌ای مذکور معرفی گردیده که بر اساس آن مقدار دریفت 9/0 درصد برای شناسایی سطح عملکرد قابلیت بهره‌برداری بی‌وقفه و دریفت 5/7 درصد یا کاهش شیب منحنی IDA به 20 درصد مقدار آن در حالت الاستیک برای تعیین سطح عملکرد آستانه فروریزش پیشنهاد شده است.

کلیدواژه‌ها


عنوان مقاله [English]

New Criteria for the Determination of Seismic Performance Levels of Dual-Steel Concentrically Braced Frames Based on the Park-Ang Damage Index

نویسندگان [English]

  • Ebrahim Fadaei 1
  • Hamzeh Shakib 1
  • Alireza Azarbakht 2
1 School of Civil and Environmental Engineering, Tarbiat Modares University, Tehran, Iran
2 Department of Civil Engineering, Faculty of Engineering, Arak University, Arak, Iran and Department of Civil and Environmental Engineering, University of Strathclyde, Glasgow, UK
چکیده [English]

The Performance-Based Earthquake Engineering (PBEE) has emerged three decades ago in order to improve the safety assessment of structures. The computational advances in past decades paved the way for researchers and engineers to be able to use sophisticated algorithms for analysing complicated structures. PBEE aims at assessing and control the performance in different structural elements during and after a target ground motion. The immediate occupancy, life safety and collapse prevention are three common structural limit states that have been used in most of the regulations around the world. However, quantification of these limit states for different structural systems is somehow not very crystal clearly defined. FEMA 273, FEMA 356, and ASCE 41-13 are some pioneers in this subject in which they compare demand and capacity at each element. Excessing demand to the capacity ratio in one element means that the whole structure fails to comply with the regulations, which might somehow be a conservative approach. However, FEMA 350 is one of the few regulations that uses an approach for the structural assessment as a whole.
Dual systems usually provide enough strength, stiffness, and ductility, especially for tall buildings in seismic prone regions. The combination of steel moment frame and the concentric bracing system is one of the most convenient dual systems around the world. The bracing system bears the majority of the base shear; however, after significant buckling of braces, the moment frame behaves as a second line of defence. It is worth mentioning that few attempts have been made in order to quantify the limit states in dual systems. The limit state criteria for individual moment resisting or bracing systems might be different in essence if being used for dual systems. Therefore, limit states for these dual systems should specifically being studied. Therefore, this vital issue is the main focus of the current study.
In designing and evaluating structures based on performance, identifying the performance levels of the structure at specific seismic hazard levels is of particular importance. In assessing the seismic performance of dual-steel concentrically braced frames consisting of moment-resisting frames and concentrically braced frames with incremental dynamic analysis, there are no accepted and reliable criteria for determining performance levels. The present study proposes suitable and simple criteria for identifying the performance levels of this structural system. For this purpose, the mean value of the Park-Ang damage index is calculated for a given moment-resisting frame system at the performance levels based on the FEMA 350 guideline approach. On the basis of these values, the performance levels of 22 steel buildings with the dual system with different configurations of non-geometrical irregularity along the height are determined by means of incremental dynamic analysis. The mean damage index for the immediate occupancy and collapse prevention are, respectively, equal to 0.21 and 0.9. These damage indices are accounted for a reasonable representation of the structural performance. Finally, a set of appropriate and straightforward criteria for determining the performance levels of the dual-steel concentrically structural system are proposed based on the average of the capacity of the inter-story drift ratio in each performance level. The inter-story drift ratio equal to 0.9 per cent is proposed for the immediate occupancy limit state. In the case of collapse prevention limit state, the inter-story drift ratio equal to 7.5 per cent or the slope reduction of IDA curve to 20 per cent of the initial slope, each reaches earliest, is proposed as the performance limit state.

کلیدواژه‌ها [English]

  • Performance Levels
  • Moment Frame and Concentrically Braced Dual System
  • Damage Index
  1. SEAOC Vision Committee (1995) Performance Based Seismic Design Engineering. Report prepared by Structural Engineers Association of California.
  2. FEMA (1997) NEHRP Guidelines for the Seismic Rehabilitation of Buildings: FEMA 273, Washington, D.C., U.S.
  3. FEMA (2000) Prestandard and Commentary for the Seismic Rehabilitation of Buildings: FEMA 356, Washington, D.C., US.
  4. ASCE (2013) Seismic Evaluation and Retrofit of Existing Buildings. ASCE Standard No. ASCE/SEI 41–13, U.S.
  5. FEMA (2009) Quantification of Building Seismic Performance Factors. FEMA P695, Washington, DC.
  6. Tasnimi, A. and Alaei, H. (2008) An investigation on the prediction methods of performance level utilizing nonlinear seismic analysis for dual RC structural systems. Journal of Seismology and Earthquake Engineering, 9(4), 193-208 (in Persian).
  7. Adams, S.M. (2010) Performance-Based Analysis of Steel Buildings: Special Concentric Braced Frame.
  8. FEMA (2000) Recommended Seismic Design Criteria for New Steel Moment-Frame Buildings. FEMA 350: Washington, DC.
  9. Uriz, P. & Mahin, S.A. (2004) Seismic performance assessment of concentrically braced steel frames. Proceedings of the 13th World Conference on Earthquake Engineering.
  10. Shakib, H. & Safi, R. (2015) Incremental inelastic dynamic analysis of a buckling-restrained braced frames in eccentric configuration subjected to near fault earthquakes records. Sharif Journal of Civil Engineering, 31.2(1.2), 123-131.
  11. Longo, A., Montuori, R., & Piluso, V. (2014) Theory of plastic mechanism control for MRF–CBF dual systems and its validation. Bulletin of Earthquake Engineering, 12(6), 2745-2775.
  12. Hosseini, M., & Majd, M. (2011) Developing fragility curves for regular steel buildings with X-bracing using nonlinear time history analysis. Sharif Journal of Civil Engineering, 27(1), 3-13 (in Persian).
  13. Iran, M.a.P.O.o. (2007) Instruction for Seismic Rehabilitation of Existing Buildings. Code 360. Tehran, Iran (in Persian).
  14. Estekanchy, H., Kianfar, E., & Vafa'i, A. (2006) Application of damage indexes in nonlinear analysis of steel frames endurance time method. Sharif Journal of Civil Engineering, 22(33), 13-21 (in Persian).
  15. Park, Y.-J., & Ang, A.H.-S. (1985) Mechanistic seismic damage model for reinforced concrete. Journal of Structural Engineering, 111(4), 722-739
  16. Ang, A.H., Kim, W.J., & Kim, S.B. (1993) Damage Estimation of Existing Bridge Structures. Structural Engineering in Natural Hazards Mitigation.
  17. Tabeshpour, M.R., Bakhshi, A. & Golafshani, A.A. (2004) Vulnerability and Damage Analyses of Existing Buildings. The 13th World Conference on Earthquake Engineering.
  18. Arjomandi, K., Estekanchi, H., & Vafai, A. (2009) Correlation between structural performance levels and damage indexes in steel frames subjected to earthquakes. Sci. Iranica Trans. Civil Eng., 16(2), 147-155.
  19. Stephens, J.E., & Yao, J.T. (1987) Damage assessment using response measurements. Journal of Structural Engineering, 113(4), 787-801.
  20. Rodriguez, M.E., & Padilla, D. (2009) A damage index for the seismic analysis of reinforced concrete members. Journal of Earthquake Engineering, 13(3), 364-383.
  21. Colombo, A. & Negro, P. (2005) A damage index of generalised applicability. Engineering Structures, 27(8), 1164-1174.
  22. Fajfar, P. (1992) Equivalent ductility factors, taking into account low‐cycle fatigue. Earthquake Engineering & Structural Dynamics, 21(10), 837-848.
  23. Bozorgnia, Y. & Bertero, V. (2001) Evaluation Of Damage Potential Of Recorded Earthquake Ground Motion.
  24. Kunnath, S.K., Reinhorn, A.M. & Lobo, R. (1992) IDARC Version 3.0: A Program for the Inelastic Damage Analysis of Reinforced Concrete Structures. National Center for Earthquake Engineering Research Buffalo, NY.
  25. Kamaris, G.S., Hatzigeorgiou, G.D., & Beskos, D.E. (2013) A new damage index for plane steel frames exhibiting strength and stiffness degradation under seismic motion, Engineering Structures, 46, 727-736.
  26. Massumi, A. & Moshtagh, E. (2013) A new damage index for RC buildings based on variations of nonlinear fundamental period. The Structural Design of Tall and Special Buildings, 22(1), 50-61.
  27. Wang, M.L. & Shah, S.P. (1987) Reinforced concrete hysteresis model based on the damage concept. Earthquake Engineering & Structural Dynamics, 15(8), 993-1003.
  28. DiPasquale, E., Ju, J.-W., Askar, A., & Çakmak, A.S. (1990) Relation between global damage indices and local stiffness degradation. Journal of Structural Engineering, 116(5), 1440-1456.
  29. Ghobarah, A., Abou-Elfath, H., & Biddah, A. (1999) Response-based damage assessment of structures. Earthquake Engineering & Structural Dynamics, 28(1), 79-104.
  30. Mergos, P.E. & Kappos, A.J. (2010) Seismic damage analysis including inelastic shear–flexure interaction. Bulletin of Earthquake Engineering, 8(1), 27-46.
  31. Banon, H., Irvine, H.M., & Biggs, J.M. (1981) Seismic damage in reinforced concrete frames. Journal of the Structural Division, 107(9), 1713-1729.
  32. Powell, G.H. & Allahabadi, R. (1988) Seismic damage prediction by deterministic methods: concepts and procedures. Earthquake engineering & structural dynamics, 16(5), 719-734.
  33. Ghobarah, A., Aly, N., & El-Attar, M. (1998) Seismic reliability assessment of existing reinforced concrete buildings. Journal of Earthquake Engineering, 2(04), 569-592.
  34. Sucuoǧlu, H., & Erberik, A. (2004) Energy‐based hysteresis and damage models for deteriorating systems. Earthquake Engineering & Structural Dynamics, 33(1), 69-88.
  35. BHRC (2015) Iranian Code of Practice for Seismic Resistant Design of Buildings (4th Revision ed.): Building & Housing Research Center, Iran (in Persian).
  36. INBC (2013) Iranian National Building Code, Part 10 (Steel Building Design and Construction): Tehran (in Persian).
  37. McKenna, F., Fenves, G., & Scott, M. (2000) Open System for Earthquake Engineering Simulation. University of California, Berkeley, CA.
  38. Ibarra, L.F., Medina, R.A., & Krawinkler, H. (2005) Hysteretic models that incorporate strength and stiffness deterioration. Earthquake Engineering & Structural Dynamics, 34(12), 1489-1511.
  39. Lignos, D., & Krawinkler, H. (2009) Sidesway Collapse of Deteriorating Structural Systems under Seismic Excitations. Report No. TB 172: Stanford (CA): John A. Blume Earthquake Engineering Research Center. Department of Civil and Environmental Engineering, Stanford University
  40. Lignos, D.G. & Krawinkler, H. (2011) Deterioration Modeling of Steel Components in Support of Collapse Prediction of Steel Moment Frames under Earthquake Loading. Journal of Structural Engineering, 137(11), 1291-1302.
  41. Mazzoni, S., McKenna, F., Scott, M.H., & Fenves, G.L. (2006) OpenSees command language manual.
  42. Uriz, P. (2005) Towards Earthquake Resistant Design of Concentrically Braced Steel Structures. University of California, Berkeley.
  43. Uriz, P. (2008) Toward Earthquake-Resistant Design of Concentrically Braced Steel-Frame Structures. Pacific Earthquake Engineering Research Center.
  44. Manson, S. (1965) Fatigue: a complex subject—some simple approximations. Experimental Mechanics, 5(7), 193-226.
  45. Chopra, A.K. (2008) Dynamics of Structures: Theory and Applications to Earthquake Engineering (3rd Edition). Prentice-Hall of India.
  46. Vamvatsikos, D. & Cornell, C.A. (2002) Incremental dynamic analysis. Earthquake Engineering & Structural Dynamics, 31(3), 491-514.
  47. Vamvatsikos, D. & Cornell, C.A. (2004) Applied incremental dynamic analysis. Earthquake Spectra, 20(2), 523-553.
  48. ATC (2008) Quantification of Building Seismic Performance Factors. ATC-63 Project Report: Redwood City, CA.
  49. Basu, B. & Gupta, V.K. (1995) A probabilistic assessment of seismic damage in ductile structures. Earthquake Engineering & Structural Dynamics, 24(10), 1333-1342.
  50. Carr, A. & Tabuchi, M. (1993) The structural ductility and the damage index for reinforced concrete structure under seismic excitation. The 2nd European Conference on Structural Dynamics.
  51. Cosenza, E., Manfredi, G. & Ramasco, R. (1993) The use of damage functionals in earthquake engineering: a comparison between different methods. Earthquake Engineering & Structural Dynamics, 22(10), 855-868.
  52. Kunnath, S. & Jenne, C. (1994) Seismic Damage Assessment of Inelastic RC Structures. The 5th US National Conference on Earthquake Engineering.
  53. Park, Y., Ang, A.H., & Wen, Y. (1987) Damage-limiting aseismic design of buildings. Earthquake Spectra, 3(1), 1-26.
  54. Park, Y.-J., Ang, A.H.-S., & Wen, Y.K. (1985) Seismic damage analysis of reinforced concrete buildings. Journal of Structural Engineering, 111(4), 740-757.
  55. Lotfollahi, M. & Alinia, M. (2009) Effect of tension bracing on the collapse mechanism of steel moment frames. Journal of Constructional Steel Research, 65(10), 2027-2039.
  56. Chao, S.-H., Bayat, M.R., & Goel, S.C. (2008) Performance-based plastic design of steel concentric braced frames for enhanced confidence level. The 14th World Conference on Earthquake Engineering, October.
  57. Bayat, M.R. (2010) Performance-based plastic design of earthquake resistant steel structures: concentrically braced frames, tall moment frames, plate shear wall frames: The University of Texas at Arlington.
  58. Systani, A., Asgarian, B., & Jalaiifar, A. (2016) Incremental dynamic analysis of concentrically braced frames subjected to near field ground motions. Modares Civil Engineering Journal, 16(2), 135-145 (in Persian).