پاسخ گذرای سطح زمین در حضور ناهمگنی دوقلوی زیرزمینی در برابر امواج مهاجم لرزه‌ای

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه مهندسی عمران، واحد زنجان، دانشگاه آزاد اسلامی، زنجان، ایران

چکیده

این پژوهش بر تحلیل لرزه‌ای سطح زمین در حضور ناهمگنی دوقلوی بیضوی نرم زیرزمینی در برابر امواج مهاجم برون‌صفحه‌ی SH متمرکز شده است. در تهیه‌ی مدل، از روش اجزای مرزی نیم‌صفحه در حوزه‌ی زمان بهره گرفته شده است. این روش تنها با استقرار المان بر روی وجه میانی ناهمگنی‌ها، به تحلیل مسئله می‌پردازد. با توسعه‌ی فرمول‌بندی برای ناهمگنی دوقلو و پیاده‌سازی عددی‌ آن در قالب الگوریتم داس‌بِم، مثال‌هایی پیرامون ارزیابی کیفیت روش مزبور ارائه شده است. در ادامه، با در نظر گرفتن نسبت ‌شکل ناهمگنی و زاویه‌ی تابش امواج مهاجم، پاسخ گذرای سطح و نحوه‌ پراکنش امواج لرزه‌ای در اثر برخورد به این عارضه در حوزه‌ زمان نشان داده شده است. سپس، با تبدیل نتایج به حوزه‌ فرکانس، دامنه‌ تغییر مکان و بزرگنمایی سطح زمین مورد مطالعه قرار گرفته است. نتایج به‌وضوح مبین نقش چشمگیر ناهمگنی دوقلوی بیضوی بر پاسخ لرزه‌ای سطح است و نشان می‌دهد، حداکثر تفرّق و بیشینه‌ی بزرگنمایی امواج، در نسبت شکل حداقل و هجوم امواج قائم حاصل شده است. روش حاضر به‌عنوان راهکار برای مدل‌سازی رفتار لرزه‌ای سطح در حضور عوارض توپوگرافی توپر زیرزمینی پیشنهاد شده و نتایج حاصل، در تکمیل و تدقیق آئین‌نامه‌های لرزه‌ای موجود قابل استفاده می‌باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Transient Response of the Surface by Twin Underground Inclusions Subjected to SH-Waves

نویسندگان [English]

  • Mehdi Panji
  • Saeed Mojtabazadeh-Hasanlouei
Department of Civil Engineering, Zanjan Branch, Islamic Azad University, Zanjan, Iran
چکیده [English]

In recent decades, the recognition of seismic ground motions and damage investigations in the presence of subsurface heterogeneities including cavities and inclusions during an earthquake have been considered among the seismologists. This issue is more significant for subsurface inclusions because they can change the initial nature of incidence waves and amplification/de-amplification on different zones of the surface. Therefore, evaluating various effective factors including geometry and type of features, site conditions, type of incident waves and paths of wave motion requires appropriate methods for their analysis and detailed understanding. Using these approaches allows modeling the problems of wave scattering and predicting the real seismic responses. Technically, researchers have proposed various approaches for seismic analysis. These methods can be divided into analytical, semi-analytical, experimental, and numerical ones. Despite the high accuracy of analytical methods, their lack of flexibility in the modeling of complex features has forced the researchers to use alternative approaches such as numerical methods. In recent years, increasing the power of computers has helped to solve complex engineering problems using numerical methods. In the use of numerical methods, one can never claim that the obtained results are completely exact; rather, the main purpose is to move toward accurate responses as close as possible. The numerical methods are divided into two general categories known as the domain and boundary methods. The common domain methods include the finite element method (FEM) and finite difference method (FDM). Moreover, the boundary methods are separated into two categories including full-plane and half-plane, in which each part is developed in the transformed and time domains as well. In the use of boundary element methods (BEM), one dimension of the model is reduced and the radiation conditions of waves at infinity are satisfied. The advantages of the BEM compared to the domain approaches are include the concentration of meshes only around the boundary of desired features, the satisfaction of wave radiation conditions in far boundaries, low volume of input data and memory seizure, a significant reduction in analysis time and high accuracy of the results.
In this study, step-by-step transient analysis of arbitrarily shaped twin elliptical inclusions are presented subjected to propagating obliquely incident plane SH-waves using the direct half-plane time-domain BEM approach. Based on the sub-structuring process, the model of twin subsurface inclusions was decomposed into a dual pitted half-plane and twin closed filled solids. By determining all the related matrices and applying the continuity conditions of the displacements and tractions at the interfaces, the coupled matrix was achieved to obtain all unknown boundary values. After developing the method to analyze the problem of twin inclusions, it was implemented in the general algorithm previously called DASBEM and its validity was evaluated by some practical examples. The key parameters of the shape ratio of inclusions and incident wave’s angle were considered to sensitize the response behavior. In order to complete the numerical results, some synthetic seismograms and 3D (three-dimensional) blanket amplification patterns were presented to illustrate the time and frequency-domain responses in the presence of twin inclusions. The results clearly demonstrate the significant role of the elliptical twin inclusions on the seismic response of surface and show that the maximum scattering and amplification are achieved in minimum shape ratio for vertical incident waves. It should be noted that the main objectives of the present study are presenting the ability of the proposed method in preparing simple twin inclusions models, transient analysis of complex engineering problems, obtaining high accuracy results, and illustrating a better view of subsurface irregularities interactions in the field of geotechnical earthquake engineering.

کلیدواژه‌ها [English]

  • Half-Plane BEM
  • Synthetic Seismogram
  • SH-Wave
  • Twin Inclusions
  • Time-domain
1.    Aki, K. (1988) Local site effects and strong ground motion. In: Proceedings of the Special Conference on Earthquake Engineering and Soil Dynamics 2. ASCE, Park City, UT.
2.    Davis, L.L. and West, L.R. (1973) Observed effects of topography on ground motion. Bull. Seism. Soc. Am., 63(1), 283-298.
3.    Sánchez-Sesma, F.J., Palencia, V.J., and Luzón., F. (2002) Estimation of local site effects during earthquakes: An overview. ISET J. Earthq. Tech., 39(3), 167-193.
4.    Simons, D.A. (1979) Scattering of SH-waves by thin, semi-infinite inclusions. Int. J. Sol. Struct., 16, 177-192.
5.    Kikuchi, M. (1981a) Dispersion and attenuation of elastic waves due to multiple scattering from inclusions, Phys. Earth Planet Inter., 25, 159-162.
6.    Kikuchi, M. (1981b) Dispersion and attenuation of elastic waves due to multiple scattering from cracks, Phys. Earth Planet Inter., 27, 100-105.
7.    Coussy, O. (1984) Scattering of elastic waves by an inclusion with an interface crack. Wave Motion, 6, 223-236.
8.    Wang, Y.S. and Wang, D. (1996) Scattering of elastic waves by a rigid cylindrical inclusion partially deboned from its surrounding matrix-I. SH case. Int. J. Sol. Struct., 33(19), 2789-2815.
9.    Zhao, J.X. and Qi, H. (2009) Scattering of plane SH-wave from a partially deboned shallow cylindrical elastic inclusion. J. Mech., 25(4), 411-419.
10.    Conoir, J.M. and Norris, A.N. (2010) Effective wavenumbers and reflection coefficients for an elastic medium containing random configurations of cylindrical scatterers. Wave Motion, 47, 183-197.
11.    Manoogian, M.E. and Lee, V.W. (1996). Diffraction of SH-waves by subsurface inclusion of arbitrary shape. J. Eng. Mech., 122(2), 123-129.
12.    Lysmer, J. and Drake, L.A. (1972) A finite element method for seismology. Meth. Comp. Phys., Ed Bolt BA, Academic Press, New York, 11, 181-216.
13.    Smith, W.D. (1975) The application of finite element analysis to body wave propagation problems. Geophys. J. Royal Astronom. Soc., 42(2), 747-768.
14.    Day, S.M. (1977) Finite Element Analysis of Seismic Scattering Problems [Dissertation]. University of California, San Diego.
15.    Kawase, H. and Sato, T. (1992) Simulation analysis of strong motions in the Ashigara valley considering one- and two-dimensional geological structures. J. Phys. Earth., 40(1), 27-56.
16.    Zhang, J. and Katsube, N. (1995). A hybrid finite element method for heterogeneous materials with randomly dispersed elastic inclusions. FE Analy. Desig., 19, 45-55.
17.    Nakasone, Y., Nishiyama, H., and Nojiri, T. (2000) Numerical equivalent inclusion method: a new computational method for analyzing stress fields in and around inclusions of various shapes. Mat. Sci. Eng., 285(1-2), 229-238.
18.    Boore, D.M. (1972) A note on the effect of simple topography on seismic SH-waves. Bull. Seism. Soc. Am., 62, 275-284.
19.    Ohtsuki, A. and Harumi, K. (1983) Effects of topography and subsurface inhomogeneities on seismic SV-waves. Earthq. Eng. Struct. Dyn., 11, 441-462.
20.    Kamalian, M., Jafari, M.K., Sohrabi-Bidar, A., Razmkhah, A., and Gatmiri, B. (2006) Time-domain two-dimensional site response analysis of non-homogeneous topographic structures by a hybrid FE/BE method. Soil Dyn. Earthq. Eng., 26(8), 753-765.
21.    Kamalian, M., Gatmiri, B., Sohrabi-Bidar, A., and Khalaj, A. (2007) Amplification pattern of 2D semi-sine shaped valleys subjected to vertically propagating incident waves. Commun Numer. Meth. Eng., 23(10), 871-887.
22.    Dominguez, J. and Meise, T. (1991) On the use of the BEM for wave propagation in infinite domains. Eng. Analy. BE., 8(3), 132-138.
23.    Ahmad, S. and Banerjee, P.K. (1988) Multi-domain BEM for two-dimensional problems of elastodynamics. Int. J. Numer. Meth. Eng., 26(4), 891-911.
24.    Panji, M. (2013) Seismic Analysis of Topographic Features Subjected to SH-Waves by a Half-Plane Time-Domain BEM [Dissertation]. Islamic Azad Uni, Sci Res Branch, Tehran, Iran.
25.    Panji, M., Koohsari, H., Adampira, M., Alielahi, H., and Asgari-Marnani, J. (2016a) Stability analysis of shallow tunnels subjected to eccentric loads by a boundary element method. J. Rock Mech. and Geotech. Eng., 8(4), 480-488.
26.    Panji, M., Asgari-Marnani, J., and Tavousi-Tafreshi, S. (2011) Evaluation of effective parameters on the underground tunnel stability using BEM. J. Struct. Eng. and Geotech., 1(2), 29-37.
27.    Hadley, P.K. (1987) Scattering of waves by inclusions in a nonhomogeneous elastic half-space solved by boundary element method [Dissertation]. Princeton University, Princeton, United States.
28.    Parvanova, S.L., Dineva, P.S., Manolis, G.D., and Kochev, P.N. (2014) Dynamic response of a solid with multiple inclusions under anti-plane strain conditions by the BEM. Comp. and Struct., 139, 65-83.
29.    Parvanova, S.L., Manolis, G.D., and Dineva P.S. (2015a) Wave scattering by Nano-heterogeneities embedded in an elastic matrix via BEM. Eng. Analy. with BE. 56, 57-69.
30.    Parvanova, S.L., Vasilev, G.P., Dineva, P.S., and Manolis, G.D. (2015b) Dynamic analysis of nano-heterogeneities in a finite-sized solid by Boundary and Finite element methods. Int. J. Sol. Struct., 80, 1-18.
31.    Panji, M., Ansari, B., and Asgari-Marnani, J. (2016b) Stress analysis of shallow tunnels in the multi-layered soils using half-plane BEM. J. Transp. Infrast. Eng., 2(1), 17-32 (in Persian).
32.    Panji, M. and Ansari, B. (2017a) Modeling pressure pipe embedded in two-layer soil by a half-plane BEM. Comp. and Geotech., 81(C), 360-367.
33.    Dong, C.Y., Lo, S.H., and Cheung, Y.K. (2004) Numerical solution for elastic half-plane inclusion problems by different integral equation approaches. Eng. Analy. BE., 28, 123-130.
34.    Dravinski, M. (1983) Ground motion amplification due to elastic inclusion in a half-space. Earthq. Eng. Struct. Dyn., 11, 313-335.
35.    Niwa, Y. and Hirose, S. (1986) Application of the boundary integral equation (BIE) method to transient response analysis of inclusions in half space. Wave Motion, 8, 77-91.
36.    Hadley, P.K., Askar, A., and Cakmak, A.S. (1989) Scattering of waves by inclusions in a nonhomogeneous elastic half space solved by boundary element methods. Technical Report: NCEER-89-0027.
37.    Yao, Z., Kong, F., Wang, H., and Wang, P. (2004) 2D Simulation of composite materials using BEM. Eng. Analy. BE., 28, 927-935.
38.    Rus, G. and Gallego, R. (2005) Boundary integral equation for inclusion and cavity shape sensitivity in harmonic elastodynamics. Eng. Analy. BE., 29, 77-91.
39.    Mogilevskaya, S., Crouch, S., and Stolarski, H. (2008) Multiple interacting circular nano-inhomogeneities with surface/interface effects. J. Mech. Phys. Solids, 56, 2298-2327.
40.    Yu, C.W. and Dravinski, M. (2009) Scattering of plane harmonic SH-wave by a completely embedded corrugated scatterer. Int. J. Numer. Meth. Eng., 78, 196-214.
41.    Yu, C.W. and Dravinski, M. (2010) Scattering of plane harmonic P, SV and Rayleigh-waves by a completely embedded corrugated elastic inclusion. Wave Motion, 47, 156-167.
42.    Dravinski, M. and Yu, M.C. (2011) Scattering of plane harmonic SH-waves by multiple inclusions. Geophys. J. Int., 186, 1331-1346.
43.    Parvanova, S.L., Dineva, P.S., and Manolis, G.D. (2013) Dynamic behavior of a finite-sized elastic solid with multiple cavities and inclusions using BIEM. Acta Mech., 224, 597-618.
44.    Dravinski, M. and Sheikhhassani, R. (2013) Scattering of a plane harmonic SH-wave by a rough multilayered inclusion of arbitrary shape. Wave Motion, 50, 836-851.
45.    Peters, F. and Barra, L.P. (2013) An inverse geometric problem: Position and shape identification of inclusions in a conductor domain. Eng. Analy. BE., 37, 1392-1400.
46.    Sheikhhassani, R. and Dravinski, M. (2014) Scattering of a plane harmonic SH-wave by multiple layered inclusions. Wave Motion, 51(3), 517-532.
47.    Sheikhhassani, R. and Dravinski, M. (2016) Dynamic stress concentration for multiple multilayered inclusions embedded in an elastic half-space subjected to SH-waves. Wave Motion, 62, 20-40.
48.    Ba, Z. and Yin, X. (2016) Wave scattering of complex local site in a layered half-space by using a multidomain IBEM: Incident plane SH-waves. Geophys. J. Int., 205(3), 1382-1405.
49.    Jobin, T.M., Ramji, M., and Khaderi, S.N. (2019) Numerical evaluation of the interaction of rigid line inclusions using strain intensity factors. Int. J. Mech. Sci., 153-154, 10-20.
50.    Kamalian, M., Gatmiri, B., and Sohrabi-Bidar, A. (2003) On time-domain two-dimensional site response analysis of topographic structures by BEM. J. Seism. Earthq. Eng., 5(2), 35-45.
51.    Feng, Y.D., Wang, Y.S., and Zhang, Z.M. (2003) Transient scattering of SH-waves from an inclusion with a unilateral frictional interface, a 2D time domain boundary element analysis. Comm. Numer. Meth. Eng., 19, 25-36.
52.    Huang, Y., Crouch, S.L., and Mogilevskaya, S.G. (2005) A time domain direct boundary integral method for a viscoelastic plane with circular holes and elastic inclusions. Eng. Analy. BE., 29, 725-737.
53.    Mykhaskiv, V. (2005) Transient response of a plane rigid inclusion to an incident wave in an elastic solid. Wave Motion, 41, 133-144.
54.    Lei, J., Wang, Y.S., Huang, Y., Yang, Q., and Zhang, C. (2012) Dynamic crack propagation in matrix involving inclusions by a time-domain BEM. Eng. Analy. BE., 36(5), 651-657.
55.    Panji, M., Kamalian, M., Asgari-Marnani, J., and Jafari, M.K. (2013) Transient analysis of wave propagation problems by half-plane BEM. Geophys. J. Int., 194, 1849-1865.
56.    Panji, M., Asgari-Marnani, J., and Ansari, B. (2015) Analysing the embedded water transmission pipes using half-plane BEM. J. Dam Hydroelect. Powerplant, 2(4), 22-33 (in Persian).
57.    Panji, M. and Fakhravar, A. (2017) Amplification pattern of seismic ground surface in the presence of underground horseshoe tunnel subjected to incident SH-wave. Bull. Earthq. Sci. Eng., 4(2), 49-66.
58.    Panji, M. and Ansari, B. (2017b) Transient SH-wave scattering by the lined tunnels embedded in an elastic half-plane. Eng. Analy. BE., 84, 220-230.
59.    Panji, M. and Yasemi, F. (2018) Amplification pattern of the ground surface including underground circular inclusion subjected to incident SH-waves. J. Civ. Envir. Res., 3(2), 33-50 (in Persian).
60.    Panji, M. and Mojtabazadeh-Hasanlouei, S. (2018) Time-history responses on the surface by regularly distributed enormous embedded cavities: Incident SH-waves. Earthq. Sci., 31, 1-17.
61.    Panji, M. and Mojtabazadeh-Hasanlouei, S. (2019) Seismic amplification pattern of the ground surface in presence of twin unlined circular tunnels subjected to SH-waves. J. Transp. Infrast. Eng., 10.22075/jtie.2019.16056.1342 (in Persian).
62.    Panji, M., Mojtabazadeh-Hasanlouei, S., and Yasemi, F. (2019) A half-plane time-domain BEM for SH-wave scattering by a subsurface inclusion. Comp. Geosci., 134, 10.1016/j.cageo.2019.104342.
63.    Panji, M. and Mojtabazadeh-Hasanlouei, S. (2020) Transient response of irregular surface by periodically distributed semi-sine shaped valleys: Incident SH-waves. Journal of Earthquake Tsu., 10.1142/S1793431120500050.
64.    MATLAB (2019) The Language of Technical Computing. V. 9.7. Natick, Massachusetts: The MathWorks Inc.
65.    Ohtsu, M. and Uesugi, S. (1985) Analysis of SH-wave scattering in a half space and its applications to seismic responses of geological structures. Eng. Analy., 2(4), 198-204.
66.    Ricker, N. (1953) The form and laws of propagation of seismic wavelet. Geophys., 18(1), 10-40.
67.    Israil, A.S.M. and Banerjee, P.K. (1990a) Advanced development of time-domain BEM for two-dimensional scalar wave propagation. Int. J. Numer. Meth. Eng., 29(5), 1003-1020.
68.    Israil, A.S.M. and Banerjee, P.K. (1990b) Advanced time-domain formulation of BEM for two-dimensional transient elastodynamics, Int. J. Numer. Meth. Eng., 29(7), 1421-1440.
69.    Brebbia, C.A. and Dominguez, J. (1989) Boundary Elements, an Introductory Course. Comp Mech Pub. Southampton: Boston.
70.    Dominguez, J. (1993) Boundary Elements in Dynamics. Comp. Mech. Pub., Southampton, Boston.
71.    Kawase, H. (1988) Time-domain response of a semi-circular canyon for incident SV, P and Rayleigh-waves calculated by the discrete wave-number boundary element method. Bull. Seism. Soc. Am., 78(4), 1415-1437.
72.    Mojtabazadeh-Hasanlouei, S., Panji, M., and Kamalian, M. (2020) On subsurface multiple inclusions model under transient SH-wave propagation. Waves in Random and Complex Media, DOI: 10.1080/17455030.2020.1842553.
73.    Trifunac, M.D. (1973) Scattering of plane SH-waves by a semi cylindrical canyon. Earthq. Eng. Struct. Dyn., 3(1), 267-281.