بررسی خرابی پیش‌رونده در ساختمان‌های فولادی بلندمرتبه دارای سیستم دوگانه قاب خمشی ویژه و مهاربند کمانش‌ناپذیر

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده هنر و معماری، واحد تهران غرب، دانشگاه آزاد اسلامی، تهران، ایران

2 گروه مهندسی عمران، دانشکده هنر و معماری، واحد تهران غرب، دانشگاه آزاد اسلامی، تهران، ایران

3 پژوهشکده مهندسی سازه، پژوهشگاه بین‌المللی زلزله‌شناسی و مهندسی زلزله، تهران، ایران

چکیده

در این مقاله خرابی پیش‌رونده سازه­های بلندمرتبه دارای سیستم دوگانه قاب خمشی فولادی و مهاربند کمانش­ناپذیر با در نظر گرفتن سناریوهای خرابی متعدد بررسی می­شود. مهاربندهای فولادی از نوع (هشت8- هفت7) و شورون می­باشند که در دهانه‌های کناری و گوشه نصب شده­اند. مهاربند کمانش‌ناپذیر به علت رفتار مناسب در کشش و فشار و همچنین منحنی هیسترزیس نسبتاً متقارن، عملکرد لرزه­ای مناسبی دارد. چهار نوع سازه با سیستم قاب خمشی ویژه فولادی دارای مهاربند کمانش‌ناپذیر در دهانه‌های گوشه و کناری با آرایش (هشت8- هفت7) و شورون(V) ، دارای کاربری­های مسکونی و تجاری  مورد بررسی قرار گرفته است. بر اساس مطالعات عددی مقاله حاضر، ضعیف‌ترین عملکرد در میان سازه­های مورد بررسی مربوط به سازه دوگانه با مهاربند کمانش­ناپذیر (هشت8- هفت7) در گوشه و بهترین عملکرد مربوط به سازه دوگانه با مهاربند کمانش­ناپذیر شورون در دهانه کناری بوده است. درعین‌حال عملکرد سیستم­های مورد بررسی برای حالت­های مهاربند شورون در دهانه گوشه و مهاربند (هشت8- هفت7) در دهانه کناری تا حد زیادی مشابه یکدیگر می­باشد. به‌علاوه، در تمامی سناریوهای حذف تک‌ستون، مقدار خیز در سازه‌هایی که ستون حذف شده در دهانه مهاربندی قرار نداشته است به میزان قابل‌توجهی (تقریباً 5/1 تا 3 برابر) بزرگ‌تر از خیز سازه دارای سناریوی حذف برای ستون واقع در دهانه مهاربندی می­باشد.

کلیدواژه‌ها


1.    Kaewkulchai, G. and Williamsin, E.B. (2003) Dynamic behavior of planar frames during progressive collapse. 16th ASCE Engineering Mechanics Conference. University of Washington, Seattle.
2.    Fu, F. (2009) Progressive collapse analysis of high-rise building with 3-D finite element modeling method. Journal of Constructional Steel Research, 65(5), 1269-1278.
3.    Khandelwal, K., El-Tawil, S., and Sadek, F. (2009) Progressive collapse analysis of seismically designed steel braced frames. Journal of Constructional Steel Research, 65(3), 699-708.
4.    Kim, J. and Lee, Y.H. (2010) Progressive collapse resisting capacity of tube‐type structures. The Structural Design of Tall and Special Buildings, 19(7), 761-777.
5.    GSA (2013) Alternate Path Analysis & Design Guidelines for Progressive Collapse Resistance. General Services Administration, Washington, D.C.
6.    Kim, J., Lee, Y., and Choi, H. (2011) Progressive collapse resisting capacity of braced frames. The structural Design of Tall and Special Buildings, 20(2), 257-270.
7.    Mashhadiali, N. and Kheyroddin, A. (2013) Progressive collapse assessment of new hexagrid structural system for tall buildings. The Structural Design of Tall and Special Buildings, 23(12), 947-961.
8.    Fu, F. (2014) Assessment of the progressive collapse potential in tall buildings with 3D FE method. Structures Congress 2014, ASCE, Boston, Massachusetts, 847-856.
9.    Rezvani, F. and Yousefi, A. (2015) Effect of span length on progressive collapse behaviour of steel moment resisting frames. Structures, 3, 81-89.
10.    Rezvani, F. and Ali Mohammad, M. (2017) Effect of Inverted-V Bracing on Retrofitting Against Progressive Collapse of Steel Moment Resisting Frames. International Journal of Steel Structures, 17(3), 1103-1113.
11.    Faghihmaleki, H., Nejati, F. and Masoomi, H. (2017) Evaluation of Progressive Collapse in Steel Moment Frame with Different Braces. Jordan Journal of Civil Engineering, 11(2), 280-289.
12.    BHRC (2007) Iranian Code of Practice for Seismic Resistance Design of Buildings: Standard No. 2800 (4th Edition). Building and Housing Research Center (in Persian).
13.    Moradkhani, M. (2019) Progressive Collapse of Dual Steel Moment-Resisting Frames with Buckling-Restrained Braces. M.Sc. Thesis, West Tehran Branch, Islamic Azad University (in Persian).
14.    BS 5950-1-2000 (2001) Structural Use of Steelwork in Buildings, Part 1: Code of Practice for Design-Rolled and Welded Sections. British Standards Institution, London, UK.
15.    ASCE/SEI 41-17 (2017) Seismic Evaluation and Retrofit of Existing Buildings. ASCE, Reston, VA 20191.
16.    SeismoSoft (2016) SeismoStruct, a computer program for static and dynamic non-linear analysis of framed structures [Online]. Available: www.seismosoft.com [2017, January 15].
17.    Hosseini, A. and Hassanipour, A. (2015) Numerical modeling of BRB frame systems with and without concrete. Journal of Multidisciplinary Engineering Science and Technology (JMEST), 2(8), 2309-2314.
18.    Bagerzadeh Karimi, M.R., Lotfollahi-Yaghin, M.A., Mehdi Nejad, R., and Sadeghi, V. (2015) Seismic behavior of steel structure with buckling restrained braces. Jordan Journal of Civil Engineering, 9(4), 480-488.  
19.    Zaruma, O. (2017) Seismic Stability of Buckling Restrained Braced Frames. M.Sc. Thesis, University of Illinois at Urbana-Champaign.
20.    Lopez, W.A., Gwie, D.S., Lauck, T.W., and Saunders, M. (2004) Structural design and experimental verification of a buckling-restrained braced frame system. Engineering Journal, 41(4), 177-186.             
21.    Menegotto, M. and Pinto, P.E. (1973) Method of analysis for cyclically loaded R.C. plane frames including changes in geometry and non-elastic behaviour of elements under combined normal force and bending. Symposium on the Resistance and Ultimate Deformability of Structures Acted on by Well Defined Repeated Loads, International Association for Bridge and Structural Engineering, Zurich, Switzerland, 15-22.
22.    Orkun, Y. and Serkan, B. (2018) Seismic performance of post-northridge welded connections. Latin American Journal of Solids and Structures, 15(2), 1-18.
23.    Ibarra, L.F. and Krawinkler, H. (2005) Global Collapse of Frame Structures under Seismic Excitations. Report No. 152, The John A. Blume Earthquake Engineering Center, Stanford, California.