استخراج امواج ریلی زلزله های ایران با استفاده از سه مولفه شتاب نگاشت در حوزه زمان-فرکانس

نوع مقاله : Articles

نویسندگان

گروه مهندسی عمران، دانشکده فنی و مهندسی، دانشگاه ارومیه، ارومیه، ایران

چکیده

امواج ریلی نسبت به سایر امواج، اثرات مخرب­تری بر روی سازه­های ساخت بشر دارند. شناسایی و استخراج امواج ریلی از شتاب­نگاشت­ها در حوزه زمان- فرکانس از دقت بالایی برخوردار است. در تحقیق حاضر، از تبدیل موجک پیوسته و تبدیل استوکول برای انتقال سه مؤلفه شتاب­نگاشت هر ایستگاه زلزله به حوزه زمان- فرکانس و استخراج امواج ریلی استفاده شده است. با استفاده از مشخصات حرکت بیضوی، امواج ریلی از شتاب­نگاشت­ها در حوزه زمان- فرکانس قابل استخراج می­باشند. همچنین با انتقال فاز حرکت قائم و با استفاده از ضرب داخلی نرمالایز شده، می­توان امواج ریلی پس­رونده، پیش­رونده و نیز زاویه انتشار این امواج را در حوزه زمان- فرکانس به‌طور مجزا استخراج نمود و درنهایت پاسخ را در فضای زمان ارائه داد. در مطالعه حاضر، الگوریتم­های مذکور در زبان برنامه‌نویسی متلب کدنویسی شده است. صحت تحلیل­های صورت گرفته، با استفاده از امواج ریلی استخراج شده از سیگنال­های مصنوعی و نیز داده­های زلزله چی­چی، ارزیابی شده است. در نهایت زلزله­های ایران شامل طبس، بم و منجیل مورد بررسی قرار گرفته و امواج ریلی آنها  استخراج و پارامتر­های لرزه­ای آنها محاسبه شده است. نتایج حاصله نشان می­دهد که در شتاب­نگاشت­ها سهم امواج ریلی پس­رونده بیشتر از سهم امواج ریلی پیش­رونده و سایر امواج است.

کلیدواژه‌ها


عنوان مقاله [English]

Extracting Rayleigh Waves of Iran Earthquakes from Three-Component Signals in Time-Frequency Domain

نویسندگان [English]

  • Pouya Naghshin
  • Hadi Bahadori
  • Abbass Eslami Haghighat
Department of Civil Engineering, Faculty of Engineering and Technology, Urmia University, Urmia, Iran
چکیده [English]

Rayleigh waves can be more destructive in comparison with other types of waves during earthquakes. Identification and extraction of Rayleigh waves from seismic records can be more exactly performed in time-frequency domain. In the present study, Continuous Wavelet Transform and Stockwell Transform have been used to transfer three-components of seismic signals to time-frequency domain. Rayleigh waves can be extracted based on elliptical characteristics of these waves. On the other hand, Retrograde and Prograde Rayleigh waves and their propagation azimuth can be separately extracted with phase transferring of vertical component as well as normalized inner product technique. In the present study, the mentioned two algorithms have been programmed. Accuracy of the methods has been verified with using synthetic and Chi-Chi earthquake data. Finally, Rayleigh waves and their seismic parameters have been extracted from Tabas, Bam and Manjil earthquake records. Rayleigh waves of the earthquakes have been analyzed and compared with using different seismic parameters. According to the results, Retrograde Rayleigh waves are more predominant in comparison with Prograde Rayleigh waves in earthquake signals.
Introduction
Extraction of Rayleigh waves is one of the important tasks in seismology and applied geophysics due to their destructive effects. A lot of study has been conducted in order to develop an effective method for the extraction of Rayleigh waves. Most of these methods have been presented based on the ellipticity characteristics of Rayleigh waves. Each of them has their advantages and disadvantages. In this study, two of them have been investigated, programmed and compared with each other.
Methodology and Approaches
Rayleigh waves have been extracted from three-component signals in time-frequency domain in both of the investigated methods. In algorithm 1, continuous wavelet transform has been used to transfer three components of signals from time to time-frequency domain. However, Stockwell transform has been used to perform this approach in algorithm 2. Stockwell transform retain the absolute phase of each localized frequency component, the characteristic of which is required in algorithm 2 for time-frequency transform. On the other hand, Rayleigh waves have been extracted based on the instantaneous reciprocal ellipticity and phase difference in algorithm 1 and 2 respectively. The most important advantages of algorithm 2 is that retrograde and prograde Rayleigh waves and their propagation azimuth can be separately extracted while it is not possible in algorithm 2.
In this study, both of these algorithms have been clearly illustrated by flowcharts and programmed in Matlab. Synthetic signals and Chi-Chi earthquake signals have been used for verification. After verification, results of both algorithms have been compared, and finally they have been employed in extracting Rayleigh waves of Tabas, Bam and Manjil earthquakes. Finally, maximum displacements of Rayleigh waves and total earthquake signals have been investigated and compared in these three earthquakes. In addition, energy discharge of extracted Rayleigh waves during the earthquakes have been investigated.
Results and Conclusions
Results of the study showed that algorithm 1 can be effectively used if there is not required to extract retrograde and prograde Rayleigh waves and their propagation azimuth separately because the algorithm is simpler and faster in comparison with algorithm 2. However, algorithm 2 should be employed on the condition that the extraction of retrograde and prograde Rayleigh waves and their propagation azimuth have been required. In addition, it has been concluded that Rayleigh waves have more energy in earthquake signals compared to other types of waves. Consequently, elliptical polarization is more than linear polarization in earthquakes. In comparison of retrograde and prograde Rayleigh waves, it has been concluded that retrograde Rayleigh waves have more energy and therefore they can be more destructive. Finally, it has been resulted that ratio of Rayleigh waves are different in earthquakes. Induced displacement by Rayleigh waves in Manjil earthquake was more than Bam and Tabas earthquakes.

کلیدواژه‌ها [English]

  • Rayleigh Waves
  • Time-Frequency Domain
  • Three-Component Signal
  • MATLAB
  • Stockwell Transform
  • Continuous Wavelet Transform
1.    Salvador, Bahaia (1999) Seismic Surface Waves. Instituto de Fisica, Instituto de Geociencias.
2.    Flinn, E.A. (1965) Signal analysis using rectilinearity and direction of particle motion. Proc. IEEE, 53, 1874-1876.
3.    Montalbetti, J.F. and Kanasewich, E.R. (1970) Enhancement of teleseismic body phases with a polarization filter. Geophys. J. R. Astr. Soc., 21, 119-129.
4.    Vidale, J.E. (1986) Complex polarization analysis of particle motion. Bull. Seism. Soc. Am., 76, 1393-1405.
5.    Morozov, I.B. and Smithson, S.B. (1996) Instantaneous polarization attributes and directional filtering. Geophysics, 61, 872-881.
6.    Simons, R.S. (1968) A surface wave particle motion discrimination process. Bull. Seism. Soc. Am., 58, 629-637.
7.    Samson, J.C. and Olson, J.V. (1980) Some comments on the descriptions of the polarization states of waves. Geophys. J. R. Astr. Soc., 61, 115-129.
8.    Diallo, M.S., Kulesh, M., Holschneider, M., and Scherbaum, F. (2005) Instantaneous polarization attributes in the time–frequency domain and wavefield separation. Geophysical Prospecting, 53, 723-731.
9.    Diallo, M.S., Kulesh, M., Holschneider, M., Scherbaum, F., and Adler, F. (2006) Characteri-zation of polarization attributes of seismic waves using continuous wavelet transforms. Geophysics, 71, V67-V77.
10.    Kulesh, M., Diallo, M.S., Holschneider, M., Kurennaya, K., Kruger, F., Ohrnberger, M., et al. (2007) Polarization analysis in the wavelet domain based on the adaptative covariance method. Geophysical Journal International, 170, 667-78.
11.    Kulesh, M., Holschneider, M., and Diallo, M.S. (2008) Geophysical wavelet library applications of continuous wavelet transform to the polarization and dispersion analysis of signals. Computers and Geosciences, 34-12, 1732-52.
12.    Anant, K. and Dowla, F. (1997) Wavelet transform methods for phase identification in three-component seismograms. Bulletin of the Seismological Society of America, 87, 1598-612.
13.    Galiana-Merino, J.J., Rosa-Herranz, J., Jauregui, P., Molina, S., and Giner, J. (2007) Wavelet transform methods for azimuth estimation on local three-component seismograms. Bulletin of the Seismological Society of America, 97(3), 793-803.
14.    Galiana-Merino, J.J., Parolai, S., and Rosa-Herranz, J. (2011) Seismic wave characterization using complex trace analysis in the stationary wavelet packet domain. Soil Dynam. Earthq, Eng., 31(11), 1565-1578.
15.    D’Auria, L., Giudicepietro, F., Martini, M., Orazi, M., Peluso, R., and Scarpato, G. (2010) Polarization analysis in the discrete wavelet domain: an application to volcano seismology. Bulletin of the Seismological Society of America, 100(2), 670-683.
16.    Pinnegar, C.R. (2006) Polarization analysis and polarization filtering of three-component signals with the time-frequency S transform. Geophys. J. Int., 165, 596-606.
17.    Meza-Fajardo, K.C., Papageorgiou, A.S., and Semblat, J.-F. (2015) Identification and extraction of surface waves from three-component seismograms based on the normalized inner product. Bulletin of the Seismological Society of America, 105, 210-229.
18.    Stockwell, R.G., Mansinha, L., and Lowe, R. (1996) Localization of the complex spectrum: the   S transform. IEEE Trans. Signal Process, 44(4), 998-1001.