قابلیت اعتماد لرزه‌ای و منحنی شکست سیستم‌های سازه‌ای قاب خمشی فولادی مجهز به میراگر ویسکوز

نوع مقاله : Articles

نویسندگان

دانشکده فنی و مهندسی، دانشگاه خوارزمی، تهران، ایران

چکیده

تئوری قابلیت اعتماد در کنار منحنی­های شکنندگی میزان تأثیرپذیری سازه از عدم قطعیت­های مدل‌سازی را نشان می‌دهد. این نمودارها احتمال فراگذشت از یک سطح خرابی مشخص را در مقابل پارامترهای لرزه­ای مشخص می‌کنند. در این مقاله تحلیل قابلیت اعتماد سیستم قاب خمشی تقویت‌شده با میراگر ویسکوز با اعمال عدم قطعیت در تحریک لرزه‌ای ورودی و مشخصات سازه‌ای و به دست آوردن منحنی‌های شکنندگی انجام شده است. برای این منظور تحلیل دینامیکی افزایشی غیرخطی بر روی قاب 5 و10طبقه، مدل‌سازی شده در نرم‌افزار OpenSees تحت مجموعه 22 زوج شتاب‌نگاشت رکوردهای حوزه دور اعمال شده است. همچنین به کمک روش مونت‌کارلو 10000 منحنی شکنندگی جهت تعیین منحنی شکست نهایی شبیه‌سازی شد. نتایج نشان می‌دهد با افزایش طبقات سازه تأثیر لحاظ نمودن عدم قطعیت در پاسخ سازه‌ها قابل‌توجه می‌باشد. بر اساس نتایج با در نظر گرفتن عدم قطعیت در قاب‌های 5 و 10 طبقه در احتمال فرو ریزش50 درصد مقدار شتاب طیفی (Sa) متناظر به‌ترتیب 1/7 درصد و3/9 درصد نسبت به زمانی که عدم قطعیت در مشخصات سازه­ای در نظر گرفته نشود، کمتر می­گردد. همچنین در مقادیر شتاب طیفی متناظر با پریود اصلی سازه برای قاب 5 طبقه و 10طبقه با در نظر گرفتن عدم قطعیت درصد احتمال شکست به‌ترتیب حدود 4/52 درصد و 7/74 درصد بیشتر می­شود.

کلیدواژه‌ها


1.    Moehle, J. and Deierlein, G.G. (2004) A framework methodology for performance-based earthquake engineering. 13th World Conference on Earthquake Engineering, 679.
2.    Rahimi, S. and Nemati, M. (2015) Introduction to Reliability Methods and its Applications in Structural Engineering. First National Conference on Applied Research in Civil Engineering (in Persian).
3.    Rezaei, F., Gerami, M., and Naderpour, H. (2017) Evaluation of seismic reliability of steel moment resisting frames rehabilitated by concentric braces with probabilistic models. Journal of Structural and Construction Engineering (JSCE), 4(2), 5-18 (in Persian).
4.    Liel, A.B., Haselton, C.B., Deierlein, G.G., and Baker, J.W. (2009) Incorporating modeling uncertainties in the assessment of seismic collapse risk of buildings. Structural Safety, 31(2), 197-211.
5.    Altieri, D., Tubaldi, E., Patelli, E., and Dall’ Asta, A. (2017) Assessment of optimal design methods    of viscous dampers. Procedia Engineering, 199, 1152-1157.
6.    Guo, A., Xu, Y., and Wu, B. (2002) Seismic reliability analysis of hysteretic structure with viscoelastic dampers. Engineering Structures, 24(3), 373-383.
7.    Mahsuli, M. (2012) Probabilistic Models, Methods, and Software for Evaluating Risk to Civil Infrastructure. University of British Columbia.
8.    Mahsuli, M. and Haukaas, T. (2013) The Computer Program Rt. (The University of British columbia) Retrieved: http://terje.civil.ubc.ca/the-computer-program-rt/.
9.    Mahsuli, M. and Haukaas, T. (2012) Computer program for multimodel reliability and optimization analysis. Journal of Computing in Civil Engineering, 27(1), 87-98.
10.    Dall’Asta, A., Scozzese, F., Ragni, L., and Tubaldi, E. (2017) Effect of the damper property variability on the seismic reliability of linear systems equipped with viscous dampers. Bulletin of Earthquake Engineering, 15(11), 5025-5053.
11.    Agency, F.E. (2009) Quantification of Building Seismic Performance Factors. FEMA P695.
12.    Maniei, S., Sarvoghad moghaddam, A., and Ghafouri ashtiani, M. (2016) Probabilistic Assessment of the Asymmetric Collapsing Short Buildings in the Plan. Bulletin of Earthquake Science and Engineering, 3(2), 47-69, (in Persian).
13.    Karavasilis, T.L. (2016) Assessment of capacity design of columns in steel moment resisting frames with viscous dampers. Soil Dynamics and Earthquake Engineering, 88, 215-222.
14.    Karavasilis, T. and Konstantinos, K. (2019) Limits for the interstorey drift sensitivity coefficient θ of steel MRFs with viscous dampers designed according to Eurocode 8. Dynamics and Earthquake Engineering, 117, 203-215.
15.    Agency, F.E. (2003) HAZUS-MH MR4 Technical Manual. National Institute of Building Sciences and Federal Emergency Management Agency (NIBS and FEMA), 213.
16.    Agency, F.E. (2000) Recommended Seismic Design Criteria for New Steel Moment-Frame Buildings. FEMA350, 196.
17.    Vamvatsikos, D. and Cornell, C.A. (2004) Applied incremental dynamic analysis. Earthquake Spectra, 20(2), 523-553.‏
18.    Bucher, C.G. and Bourgund, U. (1990) A fast and efficient response surface approach for structural reliability problems. Structural Safety, 7(1), 57-66.
19.    Myers, R.H. and Carter, W.H. (1973) Response surface techniques for dual response systems. Technometrics, 15(2), 301-317.
20.    Zhang, Z.Y., Huang, W.B., Zhou, Y.F., and Song, T.S. (2012) Seismic reliability analysis of complex structure. Advanced Materials Research, 446, 2321-2325. Trans Tech Publ.
21.    Lignos, D.G. and Krawinkler, H. (2011) Deterioration modeling of steel components in support of collapse prediction of steel moment frames under earthquake loading. Journal of Structural Engineering, 137(11), 1291-1302.
22.    Wolfe, R., Yun, H.B., Masri, S., Tasbihgoo, F., and Benzoni, G. (2008) Fidelity of reduced‐order models for large‐scale nonlinear orifice viscous dampers. Structural Control and Health Monitoring: The Official Journal of the International Association for Structural Control and Monitoring and of the European Association for the Control of Structures, 15(8), 1143-1163.