تعیین آنلاین ماتریس‌ وزنی کنترلر LQR با استفاده از ناظر فازی تحت رکوردهای زمین‌لرزه مصنوعی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، دانشگاه صنعتی شاهرود، شاهرود، ایران

2 دانش‌آموخته کارشناسی ارشد، دانشگاه مراغه، مراغه، ایران

3 دانشیار، دانشکده مهندسی عمران، دانشگاه صنعتی شاهرود، شاهرود، ایران

چکیده

یکی از مسائل اساسی در استفاده از کنترل بهینه خطی مرتبه دوم (LQR)، تنظیم مقادیر ماتریس‌های وزنی آن می‌باشد که بر اساس سعی و خطا و استفاده از الگوریتم‌های بهینه‌یابی فراکاوشی تعیین می‌گردند. در صورت وجود عدم قطعیت پارامتری و نویز در حس‌گرها عملکرد این کنترلر دچار اختلال می‌شود. در این مطالعه به‌منظور حل این مشکل یک کنترلر ترکیبی Fuzzy-LQR پیشنهاد شده که در آن از یک ناظر فازی برای تعیین آنلاین ماتریس وزن LQR استفاده شده است. برای ارزیابی عملکرد کنترلر پیشنهادی از دو سازه 3 و 8 طبقه استفاده شده که تمام طبقات آنها مجهز به عملگر کابل فعال است. این سازه‌ها تحت ارتعاش دو زمین‌لرزه مصنوعی با سطح خطر 10  و 2 درصد در 50 سال قرار گرفته و پاسخ‌های مختلفی از سازه اعم از حداکثر مقدار پاسخ‌ها و ریشه میانگین مربعات آنها مورد بررسی قرار گرفته است. در ادامه با مقایسه نتایج حاصل از کنترلر پیشنهادی و کنترلر LQR مبتنی بر الگوریتم‌های فراکاوشی مختلف می‌توان به توانایی بالای کنترلر Fuzzy-LQR اشاره کرد که حتی در حضور عدم قطعیت پارامتری و نویز در حس‌گرها نیز می‌تواند تا90 درصد منجر به کاهش پاسخ گردد. در نهایت می‌توان نتیجه گرفت که کنترلر پیشنهادی دارای رفتاری مقاوم و پایدار در برابر تحریک‌های گوناگون و عدم قطعیت‌های سیستم می‌باشد.

کلیدواژه‌ها

موضوعات


  1. Cooper, J.D., Friedland, I.M., Buckle, I.G., Nimis, R.B. and McMullin Bobb, N. (1994) The Northridge earthquake: progress made, lessons learned in seismic-resistant bridge design. Public Roads, 58(1).
  2. Ghasemi, H. and Otsuka, H. (1996) Aftermath of the Kobe earthquake. Public Roads, 60(2), 17-22.
  3. Liel, A.B. and Haselton, C.B. (2009) Lessons learned from seismic collapse assessment of buildings for evaluation of bridge structures. in TCLEE 2009: Lifeline Earthquake Engineering in a Multihazard Environment. p. 1-12.
  4. Soong, T. and Spencer Jr, B. (2002) Supplemental energy dissipation: state-of-the-art and state-of-the-practice. Engineering Structures, 24(3), 243-259.
  5. Anajafi, H. and Medina, R.A. (2018) Comparison of the seismic performance of a partial mass isolation technique with conventional TMD and base-isolation systems under broad-band and narrow-band excitations. Engineering Structures, 158, 110-123.
  6. Warburton, G. and Ayorinde, E. (1980) Optimum absorber parameters for simple systems. Earthquake Engineering & Structural Dynamics, 8(3), 197-217.
  7. Soong, T. (1988) State-of-the-art review: active structural control in civil engineering. Engineering Structures, 10 (2), 74-84.
  8. Spencer, Jr, B., Dyke, S. and Deoskar, H. (1998) Benchmark problems in structural control: part II—active tendon system. Earthquake Engineering & Structural Dynamics, 27(11), 1141-1147.
  9. Farzam, M.F., Jalali, H.H., Mousavi Gavgani, S.A.M., Kayabekir, A.E. and Bekdaş, G. (2021) Current Trends in the Optimization Approaches for Optimal Structural Control. Advances in Structural Engineering—Optimization, 133-179.
  10. Nigdeli, S. and Boduroğlu, M. (2010) Active Tendons for Seismic Control of Buildings. World Academy of Science, ICMSE, Paris July, 68, 1258-1264.
  11. Joghataie, A. and Mohebbi, M. (2012) Optimal control of nonlinear frames by Newmark and distributed genetic algorithms. The Structural Design of Tall and Special Buildings, 21(2), 77-95.
  12. Yanik, A. and Aldemir, U. (2019) A simple structural control model for earthquake excited structures. Engineering Structures, 182, 79-88.
  13. Rather, F. and Alam, M. (2020) Relative performance of linear quadratic regulator and pole placement technique for active seismic control of structures. in IOP Conference Series: Earth and Environmental Science.
  14. Ulusoy, S., Bekdaş, G., Nigdeli, S.M., Kim, S. and Geem, Z.W. (2021) Performance of optimum tuned PID controller with different feedback strategies on active-controlled structures. Applied Sciences, 11(4), 1682.
  15. Mohammadi, R.K., Ghamari, H. and Farsangi, E.N. (2021) Active control of building structures under seismic load using a new uniform deformation-based control algorithm, Structures.
  16. Yanik, A. (2019) Absolute instantaneous optimal control performance index for active vibration control of structures under seismic excitation. Shock and Vibration.
  17. Miyamoto, K., and She, J., Sato, D., and Yasuo, N. (2018) Automatic determination of LQR weighting matrices for active structural control. Engineering Structures, 174, 308-321.
  18. Heidari, A.H., Etedali, S. and Javaheri-Tafti, M.R. (2018) A hybrid LQR-PID control design for seismic control of buildings equipped with ATMD. Frontiers of Structural and Civil Engineering, 12(1), 44-57.
  19. Sato, D., Chen, Y., Miyamoto, K. and She, J. (2019) A spectrum for estimating the maximum control force for passive-base-isolated buildings with LQR control. Engineering Structures, 199, 109600.
  20. Miyamoto, K., Sato, D. and She, J. (2018) A new performance index of LQR for combination of passive base isolation and active structural control. Engineering Structures, 157, 280-299.
  21. Alavinasab, A., Moharrami, H. and Khajepour, A. (2006) Active control of structures using energy‐based LQR method. ComputerAided Civil and Infrastructure Engineering, 21(8), 605-611.
  22. Bahar, O., Banan, M., Mahzoon, M. and Kitagawa, Y. (2003) Instantaneous optimal Wilson-θ control method. Journal of Engineering Mechanics, 129(11), 1268-1276.
  23. Marco, A., Hennig, P., Bohg, J., Schaal, S. and Trimpe, S. (2016) Automatic LQR tuning based on Gaussian process global optimization. 2016 IEEE International Conference on Robotics and Automation (ICRA).
  24. Solihin, M.I. and Akmeliawati, R. (2010) Particle swam optimization for stabilizing controller of a self-erecting linear inverted pendulum. International Journal of Electrical and Electronic Systems Research, 3, 410-415.
  25. Shen, P. (2014) Application of genetic algorithm optimization LQR weighting matrices Control Inverted Pendulum. Applied Mechanics and Materials, Trans. Tech. Publ.
  26. Katebi, J., Shoaei-parchin, M., Shariati, M., Trung, N.T. and Khorami, M. (2019) Developed comparative analysis of metaheuristic optimization algorithms for optimal active control of structures. Engineering with Computers, 1-20.
  27. Das, S. and Chakraborty, A. (2020) Optimal Design of MRTLCD for Semi-active Vibration Control of Building Structures Using Genetic Algorithm, Advances in Rotor Dynamics, Control, and Structural Health Monitoring. Springer, 615-625.
  28. Karthick, S., Jerome, J., Kumar, E.V. and Raaja, G. (2016) APSO based weighting matrices selection of LQR applied to tracking control of SIMO system. Proceedings of 3rd International Conference on Advanced Computing, Networking and Informatics, Springer.
  29. Moghaddasie, B. and Jalaeefar, A. (2019) Optimization of LQR method for the active control of seismically excited structures. Smart Structures and Systems, 23(3), 243-261.
  30. Yazdanpanah, R., Mahjoob, M. and Abbasi, E. (2013) Fuzzy LQR controller for heading control of an unmanned surface vessel. International Conference in Electrical and Electronics Engineering.
  31. Sugeno, M. and Yasukawa, T. (1993) A fuzzy-logic-based approach to qualitative modeling. IEEE Transactions on fuzzy systems, 1(1), 7-31.
  32. Yu, W. and Thenozhi, S. (2016) Active structural control with stable fuzzy PID techniques, Springer.
  33. Son, N.N., Van Kien, C. and Anh, H.P.H. (2019) Uncertain nonlinear system control using hybrid fuzzy LQR-sliding mode technique optimized with evolutionary algorithm. Engineering Computations.
  34. Housner, G., Bergman, L.A., Caughey, T.K., Chassiakos, A.G., Claus, R.O., Masri, S.F., Skelton, R.E., Soong, T., Spencer, B. and Yao, J.T. (1997) Structural control: past, present, and future. Journal of Engineering Mechanics. 123(9), 897-971.
  35. Wang, S.-G., Yeh, H. and Roschke, P.N. (2001) Robust control for structural systems with parametric and unstructured uncertainties. Journal of Vibration and Control, 7(5), 753-772.
  36. Kaufman, H., Barkana, I. and Sobel, K. (2012) Direct adaptive control algorithms: theory and applications. Springer Science & Business Media.
  37. Papadimitriou, C., Katafygiotis, L. and Au, S.K. (1997) Effects of structural uncertainties on TMD design: A reliability‐based approach. Journal of Structural Control, 4(1), 65-88.
  38. Du, H., Zhang, N., Samali, B. and Naghdy, F. (2012) Robust sampled-data control of structures subject to parameter uncertainties and actuator saturation. Engineering Structures, 36, 39-48.
  39. Shahi, M., Sohrabi, M.R. and Etedali, S. (2018) Seismic control of high-rise buildings equipped with ATMD including soil-structure interaction effects. Journal of Earthquake and Tsunami, 12(03), 1850010.
  40. Fisco, N. and Adeli, H. (2011) Smart structures: part II—hybrid control systems and control strategies. Scientia Iranica, 18(3), 285-295.
  41. Zadeh, L.A. (1965) Information and control. Fuzzy Sets, 8(3), 338-353.
  42. Mendel, J.M. and John, R.B. (2002) Type-2 fuzzy sets made simple. IEEE Transactions on fuzzy systems, 10(2), 117-127.
  43. Guclu, R. and Yazici, H. (2009) Seismic-vibration mitigation of a nonlinear structural system with an ATMD through a fuzzy PID controller. Nonlinear Dynamics, 58(3), 553-564.
  44. Mamdani, E.H. and Assilian, S. (1975) An experiment in linguistic synthesis with a fuzzy logic controller. International Journal of Man-Machine Studies, 7(1), 1-13.
  45. Fahimi Farzam, M., Alinejad, B. and Mousavi Gavgani, S.A. (2019) Seismic control of 10-Storey Shear frame using active tuned mass dampers and optimization by particle swarm optimization algorithm. Amirkabir Journal of Civil Engineering, 52(8), 2073-2092.
  46. Joei, P. (2012) Multi-objective and semi-active control of buildings using variable stiffness and fuzzy logic. University of Guilan (in Persian).
  47. Kwak, S.-I., Choe, G., Kim, I.-S., Jo, G.-H. and Hwang, C.-J. (2015) A Study of an Modeling Method of TS fuzzy System Based on Moving Fuzzy Reasoning and Its Application. arXiv preprint arXiv:1511.02432.
  48. Katebi, J. and Shoaei-Parchin, M. (2018) O‌p‌t‌i‌m‌a‌l v‌i‌b‌r‌a‌t‌i‌o‌n c‌o‌n‌t‌r‌o‌l o‌f s‌t‌r‌u‌c‌t‌u‌r‌e‌s u‌s‌i‌n‌g w‌a‌v‌e‌l‌e‌t t‌r‌a‌n‌s‌f‌o‌r‌m a‌n‌d colon‌i‌a‌l c‌o‌m‌p‌e‌t‌i‌t‌i‌v‌e a‌l‌g‌o‌r‌i‌t‌h‌m. Sharif Journal of Civil Engineering, 33.2(4.1), 135-143 (in Persian).
  49. Basone, F., Cavaleri, L., Di Trapani, F. and Muscolino, G. (2017) Incremental dynamic based fragility assessment of reinforced concrete structures: Stationary vs. non-stationary artificial ground motions. Soil Dynamics and Earthquake Engineering, 103, 105-117.
  50. Fatemi, A., Bagheri, A., Amiri, G.G. and Ghafory-Ashtiany, M. (2012) Generation of uniform hazard earthquake accelerograms and near-field ground motions. Journal of Earthquake and Tsunami, 6(02), 1250013.
  51. Katebi, J. and Shoaei-Parchin, M. (2020) Comparison of the Performance of Metaheuristic Algorithms in Optimal Selection of LQR Weighting Matrices. Bulletin of Earthquake Science and Engineering, 7(1), 71-91 (in Persian).
  52. Rathi, A.K. and Chakraborty, A. (2017) Reliability‐based performance optimization of TMD for vibration control of structures with uncertainty in parameters and excitation, Structural Control and Health Monitoring, 24(1).
  53. Wilson, C.M.D. and Abdullah, M.M. (2010) Structural vibration reduction using self-tuning fuzzy control of magnetorheological dampers. Bulletin of Earthquake Engineering, 8(4), 1037-1054.
  54. Bashir, A.O., Rui, X. and Zhang, J. (2019) Ride comfort improvement of a semi-active vehicle suspension based on hybrid fuzzy and fuzzy-PID controller. Stud. Inform. Control., 28, 421-30.